Advertisement

Asymptotically Optimal Algorithm for the Maximum m-Peripatetic Salesman Problem in a Normed Space

  • E. Kh. Gimadi
  • O. Yu. Tsidulko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

The maximum m-Peripatetic Salesman Problem (m-PSP) consists of determining m edge-disjoint Hamiltonian cycles of maximum total weight in a given complete weighted n-vertex graph. We consider a geometric variant of the problem and describe a polynomial time approximation algorithm for the m-PSP in a normed space of fixed dimension. We prove that the algorithm is asymptotically optimal for \(m=o(n)\).

Keywords

Maximum traveling salesman problem Maximum m-peripatetic salesman problem Normed space Asymptotically optimal algorithm 

References

  1. 1.
    Baburin, A.E., Gimadi, EKh: On the asymptotic optimality of an algorithm for solving the maximum m-PSP in a multidimensional Euclidean space. Proc. Steklov Inst. Math. 272(1), 1–13 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barvinok, A.I., Fekete, S.P., Johnson, D.S., Tamir, A., Woeginger, G., Woodroofe, R.: The geometric maximum traveling salesman problem. J. ACM 50(5), 641–664 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barvinok, A.I., Gimadi, E.Kh., Serdyukov, A.I.: In: Punnen, A., Gutin, G. (eds.) The Maximum TSP. In: The Traveling Salesman Problem and Its Variations, pp. 585–608. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  4. 4.
    De Kort, J.B.J.M.: Upper bounds and lower bounds for the symmetric K peripatetic salesman problem. Optimization 23(4), 357–367 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Duhenne, E., Laporte, G., Semet, F.: The undirected m-capacitated peripatetic salesman problem. Eur. J. Oper. Res. 223(3), 637–643 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gimadi, E.Kh.: A new version of the asymptotically optimal algorithm for solving the Euclidean maximum traveling salesman problem (in Russian). Proc. 12th Baykal International Conference 2001, Irkutsk, vol. 1, pp. 117–123 (2001)Google Scholar
  7. 7.
    Gimadi, EKh, Istomin, A.M., Rykov, I.A.: On m-capa itated peripatetic salesman problem with capaity restritions. J. Appl. Ind. Math. 8(1), 1–15 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Krarup, J.: The peripatetic salesman and some related unsolved problems. Comb. Program.: Methods Appl. NATO Adv. Study Inst. Ser. 19, 173–178 (1975)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lawler, E.L., Lenstra, J.K.: Rinnooy Kan, A.H.G., Shmoys, D.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)Google Scholar
  10. 10.
    Serdyukov, A. I: An asymptotically optimal algorithm for the maximum traveling salesman problem in Euclidean space (in Russian). Upravlyaemye Sistemy 27, Novosibirsk, pp. 79–87 (1987)Google Scholar
  11. 11.
    Shenmaier, V.V.: Asymptotically optimal algorithms for geometric Max TSP and Max m-PSP. Discret. Appl. Math. 163(2), 214–219 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Department of Mechanics and MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations