Advertisement

Adaptive Multi-objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem

  • Aymeric BlotEmail author
  • Marie-Éléonore Kessaci
  • Laetitia Jourdan
  • Patrick De Causmaecker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

Automatic algorithm configuration (AAC) is an increasingly critical factor in the design of efficient metaheuristics. AAC was previously successfully applied to multi-objective local search (MOLS) algorithms using offline tools. However, offline approaches are usually very expensive, draw general recommendations regarding algorithm design for a given set of instances, and does generally not allow per-instance adaptation. Online techniques for automatic algorithm control are usually applied to single-objective evolutionary algorithms. In this work we investigate the impact of including control mechanisms to MOLS algorithms on a classical bi-objective permutation flowshop scheduling problem (PFSP), and demonstrate how even simple control mechanisms can complement traditional offline configuration techniques.

References

  1. 1.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002).  https://doi.org/10.1023/A:1013689704352
  2. 2.
    Belluz, J., Gaudesi, M., Squillero, G., Tonda, A.: Operator selection using improved dynamic multi-armed bandit. GECCO 2015, 1311–1317 (2015).  https://doi.org/10.1145/2739480.2754712
  3. 3.
    Blot, A., Hoos, H.H., Jourdan, L., Marmion, M.É., Trautmann, H.: MO-ParamILS: a multi-objective automatic algorithm configuration framework. LION 10, 32–47 (2016)Google Scholar
  4. 4.
    Blot, A., Jourdan, L., Kessaci-Marmion, M.: Automatic design of multi-objective local search algorithms: case study on a bi-objective permutation flowshop scheduling problem. GECCO 2017, 227–234 (2017)Google Scholar
  5. 5.
    Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.É., Hoos, H.H.: Automatically configuring multi-objective local search using multi-objective optimisation. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (eds.) EMO 2017. LNCS, vol. 10173, pp. 61–76. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54157-0_5CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., et al..: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013).  https://doi.org/10.1057/jors.2013.71
  7. 7.
    Cesa-Bianchi, N., Fischer, P.: Finite-time regret bounds for the multiarmed bandit problem. ICML 1998, 100–108 (1998)Google Scholar
  8. 8.
    Dang, N.T.T., Pérez Cáceres, L., Stützle, T., De Causmaecker, P.:Configuring irace using surrogate configuration benchmarks. In: GECCO (2017). https://lirias.kuleuven.be/handle/123456789/583393
  9. 9.
    Drugan, M.M., Nowé, A.: Designing multi-objective multi-armed bandits algorithms: A study. IJCNN 2013, 1–8 (2013).  https://doi.org/10.1109/IJCNN.2013.6707036CrossRefGoogle Scholar
  10. 10.
    Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic pareto local search algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_49CrossRefGoogle Scholar
  11. 11.
    Drugan, M.M., Thierens, D.: Stochastic Pareto local search: pareto neighbourhood exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)CrossRefGoogle Scholar
  12. 12.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search. Eur. J. Oper. Res. 243(2), 369–385 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  15. 15.
    Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter Control in Evolutionary Algorithms. Parameter Setting in Evolutionary Algorithms, pp. 19–46 (2007)Google Scholar
  16. 16.
    Gai, Y., Krishnamachari, B., Jain, R.: Combinatorial network optimization with unknown variables: multi-armed bandits with linear rewards and individual observations. IEEE/ACM Trans. Netw. 20(5), 1466–1478 (2012).  https://doi.org/10.1109/TNET.2011.2181864CrossRefGoogle Scholar
  17. 17.
    Gretsista, A., Burke, E.K.: An iterated local search framework with adaptive operator selection for nurse rostering. LION 11, 93–108 (2017)Google Scholar
  18. 18.
    Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier, Morgan Kaufmann (2004)Google Scholar
  19. 19.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. LION 5, 507–523 (2011)Google Scholar
  20. 20.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)CrossRefGoogle Scholar
  21. 21.
    Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)CrossRefGoogle Scholar
  22. 22.
    Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems (2014). CoRR arXiv:abs/1402.6028
  23. 23.
    Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)CrossRefGoogle Scholar
  24. 24.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Springer (2003)Google Scholar
  26. 26.
    Marmion, M.-E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38516-2_12CrossRefGoogle Scholar
  27. 27.
    Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)CrossRefGoogle Scholar
  28. 28.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Metaheuristics for Multiobjective Optimisation, pp. 177–199. Springer (2004)Google Scholar
  29. 29.
    Rajaraman, K., Sastry, P.S.: Finite time analysis of the pursuit algorithm forlearning automata. IEEE Trans. Syst. Man Cybern. Part B 26(4), 590–598 (1996).  https://doi.org/10.1109/3477.517033
  30. 30.
    Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006).  https://doi.org/10.1287/trsc.1050.0135
  31. 31.
    Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A dynamic multiarmed bandit-geneexpression programming hyper-heuristic for combinatorial optimizationproblems. IEEE Trans. Cybern. 45(2), 217–228 (2015).  https://doi.org/10.1109/TCYB.2014.2323936
  32. 32.
    Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009).  https://doi.org/10.1145/1456650.1456656
  33. 33.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  34. 34.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. GECCO 2005, 1539–1546 (2005)Google Scholar
  36. 36.
    Vermorel, J., Mohri, M.: Multi-armed bandit algorithms and empirical evaluation. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 437–448. Springer, Heidelberg (2005).  https://doi.org/10.1007/11564096_42CrossRefGoogle Scholar
  37. 37.
    Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: Learning agents for the multi-mode project scheduling problem. J. Oper. Res. Soc. 62(2), 281–290 (2011).  https://doi.org/10.1057/jors.2010.101
  38. 38.
    Yahyaa, S.Q., Drugan, M.M., Manderick, B.: Annealing-pareto multi-objective multi-armed bandit algorithm. ADPRL 2014, 1–8 (2014).  https://doi.org/10.1109/ADPRL.2014.7010619CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lille, CNRS, UMR 9189 - CRIStALLilleFrance
  2. 2.KU Leuven, CODeS and imec research groupsKortrijkBelgium

Personalised recommendations