Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization Under a Restricted Budget

  • D. GaudrieEmail author
  • R. Le Riche
  • V. Picheny
  • B. Enaux
  • V. Herbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)


Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer solutions with equilibrated trade-offs between the objectives, we define a Pareto front center. We then modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes to maximize the expected hypervolume improvement, to restrict the search to the Pareto front center. The cumulated effects of the Gaussian Processes and the center targeting strategy lead to a particularly efficient convergence to a critical part of the Pareto set.


Gaussian processes Parsimonious optimization Computer experiments Preference-based optimization 


  1. 1.
    Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chap. 4: Preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)Google Scholar
  2. 2.
    Brockhoff, D., Bader, J., Thiele, L., Zitzler, E.: Directed multiobjective optimization based on the weighted hypervolume indicator. J. Multi-Criteria Decis. Anal. 20(5–6), 291–317 (2013)CrossRefGoogle Scholar
  3. 3.
    Emmerich, M.T., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2147–2154. IEEE (2011)Google Scholar
  4. 4.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted s-metric selection. In: International Conference on Parallel Problem Solving from Nature, pp. 784–794. Springer (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Gaudrie
    • 1
    Email author
  • R. Le Riche
    • 2
  • V. Picheny
    • 3
  • B. Enaux
    • 1
  • V. Herbert
    • 1
  1. 1.Groupe PSAVélizy-VillacoublayFrance
  2. 2.CNRS LIMOS, École Nationale Supérieure des Mines de Saint-ÉtienneSaint-ÉtienneFrance
  3. 3.Institut National de la Recherche Agronomique, MIATToulouseFrance

Personalised recommendations