Spark Plasma Sintering of High Entropy Alloys

  • Sephira Riva
  • Stephen G. R. Brown
  • Nicholas P. Lavery
  • Adam Tudball
  • Kirill V. YusenkoEmail author


High Entropy Alloys (HEAs) are a fairly new class of alloys and, although there is still discussion concerning a definitive classification of what an HEA is, they are typically characterised as having five or more principal alloying elements each at a concentration of 5% or higher. HEAs are currently the focus of much research as they have the potential to deliver improved properties over more conventional alloys. Such properties usually include improved mechanical performance and enhanced high-temperature properties. However, achievement of better properties is very dependent on the processing routes used to produce HEA material. This contribution focusses on processing routes that exploit high –pressure, especially the Spark Plasma Sintering (SPS) method, and also a promising new subset of HEA materials, namely HEA composite alloys (HEACs). While this field is still at an early stage of development some trends are beginning to emerge.


High-Entropy Alloys Spark Plasma Sintering High Entropy Alloy Composites 



This work was partially supported by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network in Advanced Engineering and Materials and by the Materials Advanced Characterization Centre (MACH1) at Swansea University. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.


  1. Brif Y, Thomas M, Todd I (2015) The use of high-entropy alloys in additive manufacturing. Scr Mater 99:93–96CrossRefGoogle Scholar
  2. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375-377:213–218CrossRefGoogle Scholar
  3. Chen W, Fu Z, Fang S, Wang Y, Xiao H, Zhu D (2013a) Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins. Mater Sci Eng A 565:439–444CrossRefGoogle Scholar
  4. Chen W, Fu Z, Fang S, Xiao H, Zhu D (2013b) Alloying behaviour, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater Des 51:854–860CrossRefGoogle Scholar
  5. Chen Z, Chen W, Wu B, Cao X, Liu L, Fu Z (2015) Effects of Co and Ti on microstructure and mechanical behaviour of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A 648:217–224CrossRefGoogle Scholar
  6. Chen H, Kauffmann A, Gorr B, Schliephake D, Seemüller C, Wagner JN, Christ HJ, Heilmaier M (2016) Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J Alloys Compd 661:206–215CrossRefGoogle Scholar
  7. Eissman N, Klöden B, Weissgärber T, Kieback B (2017) High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall 60(3):184–197CrossRefGoogle Scholar
  8. Fang S, Chen W, Fu Z (2014) Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des 54:973–979CrossRefGoogle Scholar
  9. Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D (2013a) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323CrossRefGoogle Scholar
  10. Fu Z, Chen W, Xiao H, Zhou L, Zhu D, Yang S (2013b) Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des 44:535–539CrossRefGoogle Scholar
  11. Fu Z, Chen W, Chen Z, Wen H, Lavernia EJ (2014a) Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater Sci Eng A 619:137–145CrossRefGoogle Scholar
  12. Fu Z, Chen W, Fang S, Li X (2014b) Effect of Cr addition on the alloying behaviour, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy. Mater Sci Eng A 597:204–211CrossRefGoogle Scholar
  13. Fu Z, Chen W, Wen H, Chen Z, Lavernia EJ (2015a) Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J Alloys Compd 646:175–182CrossRefGoogle Scholar
  14. Fu Z, Chen W, Wen H, Morgan S, Chen F, Zheng B, Zhou Y, Zhang L, Lavernia EJ (2015b) Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater Sci Eng A 644:10–16CrossRefGoogle Scholar
  15. Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Zhou Y, Lavernia EJ (2016) Microstructure and strengthening mechanism in an fcc structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater 107:59–71CrossRefGoogle Scholar
  16. Ganji RS, Karthik PS, Sankara Rao KB, Rajulapati KV (2017) Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater 121:58–68CrossRefGoogle Scholar
  17. Ge W, Wang Y, Shang C, Zhang Z, Wang Y (2017) Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J Mater Sci 52:5726–5737CrossRefGoogle Scholar
  18. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39CrossRefGoogle Scholar
  19. Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn MC, Mellor WM, Zhou N, Vecchio K, Luo J (2016) High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 6:37946CrossRefGoogle Scholar
  20. Gludovatz B, Hohenwarter A, Thurston KVS, Bei H, Wu Z, George EP, Ritchie RO (2016) Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 7:10602CrossRefGoogle Scholar
  21. Hadraba H, Chlup Z, Dlouhy A, Dobes F, Roupcova P, Vilemova M, Matejicek J (2017) Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A 689:252–256CrossRefGoogle Scholar
  22. Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK (2012) Fatigue behaviour of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater 60(16):5723–5734CrossRefGoogle Scholar
  23. Ji W, Fu Z, Wang W, Wang H, Zhang J, Wang Y, Zhang F (2014) Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd 589:61–66CrossRefGoogle Scholar
  24. Ji W, Wang W, Wang H, Zhang J, Wang Y, Zhang F, Fu Z (2015a) Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56:24–27CrossRefGoogle Scholar
  25. Ji W, Zhang J, Wang W, Wang H, Zhang F, Wang Y, Fu Z (2015b) Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J Eur Ceram Soc 35:879–886CrossRefGoogle Scholar
  26. Kingery WD (1959) Densification during sintering in the presence of a liquid phase. I. Theory. J Appl Phys 30:301–306CrossRefGoogle Scholar
  27. Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163CrossRefGoogle Scholar
  28. Liu B, Wang J, Chen J, Fang Q, Liu Y (2017a) Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. JOM 69(4):651–656CrossRefGoogle Scholar
  29. Liu X, Zhang L, Xu Y (2017b) Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS. Appl Phys A Mater Sci Process 123:567CrossRefGoogle Scholar
  30. Maulik O, Kumar D, Kumar S, Fabijanic DM, Kumar V (2016) Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77:46–56CrossRefGoogle Scholar
  31. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511CrossRefGoogle Scholar
  32. Mohanty S, Gurao NP, Biswas K (2014) Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater Sci Eng A 617:211–218CrossRefGoogle Scholar
  33. Mohanty S, Samal S, Tazuddin A, Tiwary CS, Gurao NP, Biswas K (2015) Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy. Mater Sci Tech 31(10):1214–1222CrossRefGoogle Scholar
  34. Mohanty S, Maity TN, Mukhopadhyay S, Sarkar S, Gurao NP, Bhowmick S, Biswas K (2017) Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater Sci Eng A 679:299–313CrossRefGoogle Scholar
  35. Moravcik I, Cizek J, Gavendova P, Sheikh S, Guo S, Dlouhy I (2016) Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater Lett 174:53–56CrossRefGoogle Scholar
  36. Moravcik I, Cizek J, Zapletal J, Kovacova Z, Vesely J, Minarik P, Kitzmantel M, Neubauer E, Dlouhy I (2017) Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater Des 119:141–150CrossRefGoogle Scholar
  37. Mridha S, Samal S, Khan PY, Biswas K, Bajargan G (2013) Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying. Metall Mater Trans A 44A:4532–4541CrossRefGoogle Scholar
  38. Muddle BC (1984) Interphase boundary precipitation in liquid phase sintered W-Ni-Fe and W-Ni-Cu alloys. Metall Trans A 15:1089–1098CrossRefGoogle Scholar
  39. Poulia A, Georgatis E, Lekatou A, Karantzalis AE (2016) Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Met Hard Mater 57:50–63CrossRefGoogle Scholar
  40. Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A 534:83–89CrossRefGoogle Scholar
  41. Praveen S, Anupam A, Sirasani T, Murty BS, Kottada RS (2013a) Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Metals 66(4):369–373CrossRefGoogle Scholar
  42. Praveen S, Murty BS, Kottada RV (2013b) Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65(12):1797–1804CrossRefGoogle Scholar
  43. Raphael A, Kumaran S, Kumar KV, Varghese L (2017) Oxidation and corrosion resistance of AlCoCrFeTi High Entropy Alloy. Mat Today Proc 4(2A):195–202CrossRefGoogle Scholar
  44. Riva S, Tudball A, Mehraban S, Lavery NP, Brown SGR, Yusenko KV (2018) A novel High-Entropy Alloy-based composite material. J Alloys Compd 730:544–551CrossRefGoogle Scholar
  45. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Micro-structure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509(20):6043–6048CrossRefGoogle Scholar
  46. Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226CrossRefGoogle Scholar
  47. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high- entropy alloys. Acta Mater 61(13):4887–4897CrossRefGoogle Scholar
  48. Tsau CH, Lee PY (2016) Microstructures of Al7.5Cr22.5Fe35Mn20Ni15 high-entropy alloy and its polarization behaviours in sulfuric acid, nitric acid and hydrochloric acid solutions. Entropy 18:288CrossRefGoogle Scholar
  49. Wang C, Ji W, Fu Z (2014) Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powder Technol 25(4):1334–1338CrossRefGoogle Scholar
  50. Wang B, Fu A, Huang X, Liu B, Liu Y, Li Z, Zan X (2016b) Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. JMEPEG 25:2985–2992CrossRefGoogle Scholar
  51. Wang HL, Gao TX, Niu JZ, Shi PJ, Xu J, Wang Y (2016c) Microstructure, thermal properties, and corrosion behaviour of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int J Min Metal Mater 23(1):77–82CrossRefGoogle Scholar
  52. Wang P, Cai H, Cheng X (2016a) Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J Alloys Compd 662:20–31CrossRefGoogle Scholar
  53. Wang P, Cai H, Zhou S, Xu L (2017) Processing, microstructure and properties of Ni1.5CoCuFeCr0.5 xVx high entropy alloys with carbon introduced from process control agent. J Alloys Compd 695:462–475CrossRefGoogle Scholar
  54. Waseem OA, Ryu HJ (2017) Powder metallurgy processing of a WxTaTiVCr High-Entropy Alloy and its derivative alloys for fusion material applications. Sci Rep 7:1926CrossRefGoogle Scholar
  55. Yang S, Yan X, Yang K, Fu Z (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72CrossRefGoogle Scholar
  56. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303CrossRefGoogle Scholar
  57. Yu DY, Zhang Y (2016) The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetall 70:24–28CrossRefGoogle Scholar
  58. Yusenko KV, Riva S, Carvalho PA, Yusenko MV, Arnaboldi S, Sukhikh AS, Hanfland M, Gromilov SA (2017) First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr Mater 138:22–27CrossRefGoogle Scholar
  59. Yusenko KV, Riva S, Crichton WA, Spektor K, Bykova E, Pakhomova A, Tudball A, Kupenko I, Rohrbach A, Klemme S, Mazzali F, Margadonna S, Lavery NP, Brown SGR (2018) High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J Alloys Compd 738:491–500CrossRefGoogle Scholar
  60. Zhang KB, Fu ZY, Zhang JY, Wang WM, Lee SW, Niihara K (2010) Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd 495(1):3–38Google Scholar
  61. Zhang Y, Yang X, Liaw PK (2012) Alloy design and properties optimization of high- entropy alloys. JOM 64(7):830–838CrossRefGoogle Scholar
  62. Zhang A, Han J, Meng J, Su B, Li P (2016) Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater Lett 181:82–85CrossRefGoogle Scholar
  63. Zhang A, Han J, Su B, Li P, Meng J (2017a) Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater Des 114:253–263CrossRefGoogle Scholar
  64. Zhang A, Han J, Su B, Meng J (2017b) A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J Alloys Compd 725:700–710CrossRefGoogle Scholar
  65. Zhao K, Niu B, Zhang F, Zhang J (2017) Microstructure and mechanical properties of spark plasma sintered TiB2 ceramics combined with a high-entropy alloy sintering aid. Adv Appl Ceram 116(1):19–23CrossRefGoogle Scholar
  66. Zheng ZY, Li XC, Zhang C, Li JC (2015) Microstructure and corrosion behaviour of the FeCoNiCuSnx high entropy alloys. Mater Sci Tech 31(10):1148–1152CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sephira Riva
    • 1
  • Stephen G. R. Brown
    • 1
  • Nicholas P. Lavery
    • 1
  • Adam Tudball
    • 2
  • Kirill V. Yusenko
    • 3
    • 4
    Email author
  1. 1.College of Engineering, Swansea UniversityWalesUK
  2. 2.Kennametal Manufacturing (UK) Ltd.WalesUK
  3. 3.BAM Federal Institute aBAM Federal Institute of Materials Research and TestingBerlinGermany
  4. 4.Institute of Solid State ChemistryEkaterinburgRussia

Personalised recommendations