Advertisement

Spark Plasma Sintering of Fine-Grain Ceramic–Metal Composites Based on Garnet-Structure Oxide Y2.5Nd0.5Al5O12 with Mo, W, and Ni

  • L. S. Golovkina
  • A. I. Orlova
  • А. V. Nokhrin
  • M. S. Boldin
  • E. A. Lantsev
  • V. N. Chuvil’deev
Chapter

Abstract

Using wet chemistry techniques, we have obtained ultrafine powders of complex oxides Y2.5Nd0.5Al5O12 with garnet structure and coated with layers of metals (Mo, W, Ni) by means of precipitation from salt solutions. Spark plasma sintering (SPS) was used to obtain fine-grain ceramic composites Y2.5Nd0.5Al5O12 – Met (Met = Mo, W, Ni) with 92–99% density. We have determined sintering activation energies and demonstrated that the dependence of shrinkage of powders on the heating temperature has a two-stage character: the stage of compaction of nanoparticles due to their regrouping and plastic flow under the action of applied stress and the direct sintering stage.

Keywords

Electron microscopy Hardness Sintering Composites Nuclear applications Activation energy Microhardness Fracture toughness 

Notes

Acknowledgments

This work is supported by Russian Science Foundation (grant №16-13-10464).

References

  1. Andrievskiy AR, Spivak II (1989) Strength of high-melting compounds and materials on their base. Metallurgiya, Chelyabinsk (in Russian)Google Scholar
  2. Beke DL (1999) Diffusion in non-metallic solids (part 1). Landolt-Börnstein – Group III Condensed Mater. http://link.springer.com/book/10.1007/b59654
  3. Chauvin N, Albiol T, Mazoyer R et al (1999a) In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel. J Nucl Mater 274:91–97.  https://doi.org/10.1016/S0022-3115(99)00080-XCrossRefGoogle Scholar
  4. Chauvin N, Konings RJM, Matzke H (1999b) Optimization of inert matrix fuel concepts for americium transmutation. J Nucl Mater 274:105–111.  https://doi.org/10.1016/S0022-3115(99)00078-1CrossRefGoogle Scholar
  5. Chuvil’deev VN, Smirnova ES (2017) Phenomenological theory of bulk diffusion in metals oxides. Phys Solid State 58:1487–1499.  https://doi.org/10.1134/S1063783416070118CrossRefGoogle Scholar
  6. Chuvil’deev VN, Boldin MS, Dyatlova YG et al (2015a) A comparative study of the hot pressing and spark plasma sintering of Al2O3-ZrO2-Ti(C,N) powders. Inorg Mater 51:1047–1053.  https://doi.org/10.1134/S0020168515090034CrossRefGoogle Scholar
  7. Chuvil’deev VN, Nokhrin AV, Sakharov NV et al (2015b) Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnol Russ 10:434–448.  https://doi.org/10.1134/S1995078015030040CrossRefGoogle Scholar
  8. Chuvil’deev VN, Blagoveshchenskiy YV, Nokhrin AV et al (2017) Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J Alloys Compd 708:547–561.  https://doi.org/10.1016/j.jallcom.2017.03.035CrossRefGoogle Scholar
  9. Delage F, Belin R, Chen X-N et al (2011) ADS fuel developments in Europe: results from the EUROTRANS integrated project. Energy Procedia 7:303–313.  https://doi.org/10.1016/j.egypro.2011.06.039CrossRefGoogle Scholar
  10. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, OxfordGoogle Scholar
  11. Golovkina LS, Orlova AI, Nokhrin AV et al (2013) Ceramics based on yttrium aluminum garnet containing Nd and Sm obtained by spark plasma sintering. Adv Ceram Sci Eng (ACSE) 2:161–165Google Scholar
  12. Golovkina LS, Orlova AI, Boldin MS et al (2017) Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxide. J Nucl Mater 489:158–163.  https://doi.org/10.1016/j.jnucmat.2017.03.031CrossRefGoogle Scholar
  13. Gosset D, Provot B (2001) Boron carbide as a potential inert matrix: an evaluation. Prog Nucl Energy 38:263–266CrossRefGoogle Scholar
  14. Gotcu-Freis P, Hiernaut J-P, Colle J-Y, Nästrén C, Carretero AF, Konings RJM (2011) Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides. J Nucl Mater 411:119–125.  https://doi.org/10.1016/j.jnucmat.2011.01.039CrossRefGoogle Scholar
  15. Gregg DJ, Karatchevtseva I, Triani G, Lumpkin GR, Vance ER (2013) The thermophysical properties of calcium and barium zirconium phosphate. J Nucl Mater 441:203–210.  https://doi.org/10.1016/j.jnucmat.2013.05.075CrossRefGoogle Scholar
  16. Haneda H, Miyazawa Y, Shirasaki S (1984) Oxygen diffusion in single crystal yttrium aluminum garnet. J Cryst Growth 68:581–588.  https://doi.org/10.1016/0022-0248(84)90465-2CrossRefGoogle Scholar
  17. Holliday K, Hartmann T, Pouneau F et al (2009) Synthesis and characterization of zirconia–magnesia inert matrix fuel: uranium homolog studies. J Nucl Mater 393:224–229.  https://doi.org/10.1016/j.jnucmat.2009.06.007CrossRefGoogle Scholar
  18. Hollingsworth JP, Kuntz JD, Soules TF (2009) Neodymium ion diffusion during sintering of Nd:YAG transparent ceramics. J Phys D Appl Phys 42:052001:1–5.  https://doi.org/10.1088/0022-3727/42/5/052001
  19. Hollingsworth JP, Kuntz JD, Ryerson FJ, Soules TF (2011) Nd diffusion in YAG ceramics. Opt Mater 33:592–595.  https://doi.org/10.1016/j.optmat.2010.10.048CrossRefGoogle Scholar
  20. Konings RJM, Haas D (2002) Fuels and targets for transmutation. C R Phys 3:1013–1022CrossRefGoogle Scholar
  21. Konings RJM, Bakker K, Boshoven JG, Hein H, Huntelaar ME, Van der Laan RR (1999) Transmutation of actinides in inert-matrix fuels: fabrication studies and modelling of fuel behaviour. J Nucl Mater 274:84–90.  https://doi.org/10.1016/S0022-3115(99)00043-4CrossRefGoogle Scholar
  22. Mrowec S (1988) On the defect structure and diffusion kinetics in transition metal sulphides and oxides. React Solids 5:241–268.  https://doi.org/10.1016/0168-7336(88)80025–1CrossRefGoogle Scholar
  23. Neeft EAC, Konings RJM, Bakkera K et al (1999) Neutron irradiation of pollycristalline yttrium aluminate garnet, magnesium aluminate spinel and A-alumina. J Nucl Mater 274:78–83.  https://doi.org/10.1016/S0022-3115(99)00079-3CrossRefGoogle Scholar
  24. Neeft EAC, Bakker K, Schram RPC et al (2003) The EFTTRA-T3 irradiation experiment on inert matrix fuels. J Nucl Mater 320:106–116.  https://doi.org/10.1016/S0022-3115(03)00176-4CrossRefGoogle Scholar
  25. O’Brien RC, Jerred ND (2013) Spark plasma sintering of W-UO2 cermets. J Nucl Mater 433:50–54.  https://doi.org/10.1016/j.jnucmat.2012.08.044CrossRefGoogle Scholar
  26. O’Brien RC, Ambrosi RM, Bannister NP et al (2009) Spark plasma sintering of simulated radioisotope materials within tungsten cermets. J Nucl Mater 393:108–113.  https://doi.org/10.1016/j.jnucmat.2009.05.012CrossRefGoogle Scholar
  27. Orlova AI, Koryttseva AK, Kanunov AE et al (2012) Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorg Mater 48:313–317.  https://doi.org/10.1134/S002016851202015XCrossRefGoogle Scholar
  28. Pelleg J (2016) Diffusion in ceramics. Series “solid mechanics and its applications”. Springer, Cham.  https://doi.org/10.1007/978-3-319-18437-1
  29. Potanina E, Golovkina L, Orlova A et al (2016) Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by spark plasma sintering. J Nucl Mater 473:93–98.  https://doi.org/10.1016/j.jnucmat.2016.02.014CrossRefGoogle Scholar
  30. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Marcel Dekker Inc, New YorkGoogle Scholar
  31. Raison PE, Haire RG (2003) Structural investigation of the pseudo-ternary system AmO2–Cm2O3–ZrO2 as potential materials for transmutation. J Nucl Mater 320:31–35.  https://doi.org/10.1016/S0022-3115(03)00165-XCrossRefGoogle Scholar
  32. Ryu HJ, Lee YW, Cha SI, Hong SH (2006) Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering. J Nucl Mater 352:341–348.  https://doi.org/10.1016/j.jnucmat.2006.02.089CrossRefGoogle Scholar
  33. Samsonov GV (1969) The oxide handbook. Metallurgiya, Moscow (in Russian)Google Scholar
  34. Somiya S, Moriyyoshi Y (1990) Sintering key papers. Elsevier Applied Science, London/New YorkCrossRefGoogle Scholar
  35. Suárez M, Fernández A, Menéndez JL, Torrecillas R (2009) Transparent yttrium aluminium garnet obtained by spark plasma sintering of lyophilized gels. J Nanomater.  https://doi.org/10.1155/2009/138490
  36. Williams HR, Ning H, Reece MJ, Ambrosi RM, Bannister NP, Stephenson K (2013) Metal matrix composite fuel for space radioisotope energy sources. J Nucl Mater 433:116–123.  https://doi.org/10.1016/j.jnucmat.2012.09.030CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. S. Golovkina
    • 1
  • A. I. Orlova
    • 1
  • А. V. Nokhrin
    • 1
  • M. S. Boldin
    • 1
  • E. A. Lantsev
    • 1
  • V. N. Chuvil’deev
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations