Advertisement

Vitamin E Serum Levels and the Challenge to Correct for Lipids: Accounting for the Usual Double Correction for Variance Shared by Total Cholesterol and Fasting Triglycerides Reveals New Insights into the Association with the One-Carbon Pathway

  • Isidor Minović
  • Camilo G. Sotomayor
  • Manfred Eggersdorfer
  • Ineke J. Riphagen
  • Martin H. de Borst
  • Louise H. Dekker
  • Gerjan Navis
  • Ilja M. Nolte
  • Sander K. R. van Zon
  • Sijmen A. Reijneveld
  • Jan C. van der Molen
  • Wilhelmina H. A. de Jong
  • Jenny E. Kootstra-Ros
  • Ido P. Kema
  • Stephan J. L. BakkerEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Vitamin E has important antioxidant properties and is implicated in protection against the development of age-related diseases. An important problem hampering correct interpretation of circulating concentrations of vitamin E is its affinity for circulating lipids, causing a high correlation with total cholesterol and fasting triglycerides. Many studies correct for this by analyzing vitamin E concentrations as the quotient calculated from dividing vitamin E concentrations by total cholesterol plus fasting triglycerides, hereby negating the possible introduction of error from double correction for variance shared by total cholesterol and fasting triglycerides. We therefore set out to compare correlations of circulating vitamin E concentrations, correlations of the quotient of circulating vitamin E concentrations, and linear regression-derived standardized regression coefficients in which associations are adjusted for total cholesterol and fasting triglycerides with circulating concentrations of fasting lipids, components of the metabolic syndrome, and circulating vitamin concentrations. We found that otherwise strongly positive correlations of fasting lipids with vitamin E became inverse after correction for total cholesterol plus fasting triglycerides, indicating potential overadjustment, but this could not be overcome by adjustment via linear regression. We consistently found highly significant positive associations for α-tocopherol with vitamins of the one-carbon pathway and an inverse association with homocysteine. We also consistently found highly significant positive associations of γ-tocopherol with components of the metabolic syndrome and highly significant inverse associations with vitamins of the one-carbon pathway and positive associations with homocysteine and methylmalonic acid. In conclusion, the results of our analyses indicate that double correction for variance shared by total cholesterol and fasting triglycerides may indeed be a problem in the correct interpretation potential relations of circulating vitamin E concentrations with biological variables in the lipid domain in epidemiological studies, while other domains seem relatively undisturbed. In these undisturbed domains, we found indications of positive health associations for α-tocopherol with vitamins in the one-carbon pathway and adverse health associations for γ-tocopherol in the domain of the metabolic syndrome and vitamins in the one-carbon pathway. In conclusion, in the population that we investigated, γ-tocopherol may serve as a biomarker for intake of a generally unhealthy diet, while the opposite is true for α-tocopherol.

Keywords

Vitamin E Tocopherol Cholesterol HDL LDL Triglycerides Variance Metabolic syndrome One carbon metabolism Vitamin B6 Vitamin B12 Folic acid Vitamin B11 Homocysteine 

References

  1. 1.
    Bakker SJ, Gans RO, ter Maaten JC, Teerlink T, Westerhoff HV, Heine RJ. The potential role of adenosine in the pathophysiology of the insulin resistance syndrome. Atherosclerosis. 2001;155:283–90.CrossRefGoogle Scholar
  2. 2.
    Bakker SJ, Jzerman I, RG TT, Westerhoff HV, Gans RO, Heine RJ. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis. 2000;148:17–21.CrossRefGoogle Scholar
  3. 3.
    Blom HJ, van Rooij A, Hogeveen M. A simple high-throughput method for the determination of plasma methylmalonic acid by liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med. 2007;45:645–50.CrossRefGoogle Scholar
  4. 4.
    Boenzi S, Rizzo C, Di Ciommo VM, Martinelli D, Goffredo BM, la Marca G, Dionisi-Vici C. Simultaneous determination of creatine and guanidinoacetate in plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal. 2011;56:792–8.CrossRefGoogle Scholar
  5. 5.
    Borggreve SE, Hillege HL, Wolffenbuttel BH, de Jong PE, Bakker SJ, van der Steege G, van Tol A, Dullaart RP, Prevend Study Group. The effect of cholesteryl ester transfer protein -629C->A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J Clin Endocrinol Metab. 2005;90:4198–204.CrossRefGoogle Scholar
  6. 6.
    Casetta B, Jans I, Billen J, Vanderschueren D, Bouillon R. Development of a method for the quantification of 1alpha,25(OH)2-vitamin D3 in serum by liquid chromatography tandem mass spectrometry without derivatization. Eur J Mass Spectrom (Chichester). 2010;16:81–9.CrossRefGoogle Scholar
  7. 7.
    Catalgol B, Ozer NK. Protective effects of vitamin E against hypercholesterolemia-induced age-related diseases. Genes Nutr. 2012;7:91–8.CrossRefGoogle Scholar
  8. 8.
    Chai W, Novotny R, Maskarinec G, Le Marchand L, Franke AA, Cooney RV. Serum coenzyme Q(1)(0), alpha-tocopherol, gamma-tocopherol, and C-reactive protein levels and body mass index in adolescent and premenopausal females. J Am Coll Nutr. 2014;33:192–7.CrossRefGoogle Scholar
  9. 9.
    Cook-Mills JM, Abdala-Valencia H, Hartert T. Two faces of vitamin E in the lung. Am J Respir Crit Care Med. 2013;188:279–84.CrossRefGoogle Scholar
  10. 10.
    Cooney RV, Franke AA, Wilkens LR, Gill J, Kolonel LN. Elevated plasma gamma-tocopherol and decreased alpha-tocopherol in men are associated with inflammatory markers and decreased plasma 25-OH vitamin D. Nutr Cancer. 2008;60(Suppl 1):21–9.CrossRefGoogle Scholar
  11. 11.
    Goodman DS. Overview of current knowledge of metabolism of vitamin A and carotenoids. J Natl Cancer Inst. 1984;73:1375–9.PubMedGoogle Scholar
  12. 12.
    Hulsegge G, Herber-Gast GC, Spijkerman AM, Susan H, Picavet J, van der Schouw YT, Bakker SJ, Gansevoort RT, Dolle ME, Smit HA, Monique Verschuren WM. Obesity and age-related changes in markers of oxidative stress and inflammation across four generations. Obesity (Silver Spring). 2016;24:1389–96.CrossRefGoogle Scholar
  13. 13.
    Karademir B, Ozer NK. Molecular function of tocopherols in age related diseases. Curr Pharm Des. 2014;20:3030–5.CrossRefGoogle Scholar
  14. 14.
    Klijs B, Scholtens S, Mandemakers JJ, Snieder H, Stolk RP, Smidt N. Representativeness of the LifeLines cohort study. PLoS One. 2015;10:e0137203.CrossRefGoogle Scholar
  15. 15.
    Korosec T, Tomazin U, Horvat S, Keber R, Salobir J. The diverse effects of alpha- and gamma-tocopherol on chicken liver transcriptome. Poult Sci. 2017;96:667–80.PubMedGoogle Scholar
  16. 16.
    Kunutsor SK, Kieneker LM, Bakker SJL, James RW, Dullaart RPF. Incident type 2 diabetes is associated with HDL, but not with its anti-oxidant constituent – paraoxonase-1: the prospective cohort PREVEND study. Metabolism. 2017a;73:43–51.CrossRefGoogle Scholar
  17. 17.
    Kunutsor SK, Kieneker LM, Bakker SJL, James RW, Dullaart RPF. The inverse association of HDL-cholesterol with future risk of hypertension is not modified by its antioxidant constituent, paraoxonase-1: the PREVEND prospective cohort study. Atherosclerosis. 2017b;263:219–26.CrossRefGoogle Scholar
  18. 18.
    Leberkuhne LJ, Ebtehaj S, Dimova LG, Dikkers A, Dullaart RP, Bakker SJ, Tietge UJ. The predictive value of the antioxidative function of HDL for cardiovascular disease and graft failure in renal transplant recipients. Atherosclerosis. 2016;249:181–5.CrossRefGoogle Scholar
  19. 19.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRefGoogle Scholar
  20. 20.
    Li N, van der Sijde MR, Group LifeLines Cohort Study, Bakker SJ, Dullaart RP, van der Harst P, Gansevoort RT, Elbers CC, Wijmenga C, Snieder H, Hofker MH, Fu J. Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels. Diabetes. 2014a;63:3149–58.CrossRefGoogle Scholar
  21. 21.
    Li Y, Wongsiriroj N, Blaner WS. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg Nutr. 2014b;3:126–39.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Marchese ME, Kumar R, Colangelo LA, Avila PC, Jacobs DR Jr, Gross M, Sood A, Liu K, Cook-Mills JM. The vitamin E isoforms alpha-tocopherol and gamma-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res. 2014;15:31.CrossRefGoogle Scholar
  23. 23.
    Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Franceschi C, Monti D. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev. 2014;14:81–101.CrossRefGoogle Scholar
  24. 24.
    Nadiger HA, Krishnan R, Radhaiah G. Studies on interactions of vitamin E with thiamine, niacin and vitamin B12. Clin Chim Acta. 1981;116:9–16.CrossRefGoogle Scholar
  25. 25.
    Ren X, Chen ZA, Zheng S, Han T, Li Y, Liu W, Hu Y. Association between triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed Type 2 diabetes mellitus. PLoS One. 2016;11:e0154345.CrossRefGoogle Scholar
  26. 26.
    Riphagen IJ, van der Molen JC, van Faassen M, Navis G, de Borst MH, Muskiet FA, de Jong WH, Bakker SJ, Kema IP. Measurement of plasma vitamin K1 (phylloquinone) and K2 (menaquinones-4 and -7) using HPLC-tandem mass spectrometry. Clin Chem Lab Med. 2016;54:1201–10.CrossRefGoogle Scholar
  27. 27.
    Schindhelm RK, Diamant M, Bakker SJ, van Dijk RA, Scheffer PG, Teerlink T, Kostense PJ, Heine RJ. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus. Eur J Clin Investig. 2005;35:369–74.CrossRefGoogle Scholar
  28. 28.
    Scholtens S, Smidt N, Swertz MA, Bakker SJ, Dotinga A, Vonk JM, van Dijk F, van Zon SK, Wijmenga C, Wolffenbuttel BH, Stolk RP. Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44:1172–80.CrossRefGoogle Scholar
  29. 29.
    Shamim AA, Kabir A, Merrill RD, Ali H, Rashid M, Schulze K, Labrique A, West KP Jr, Christian P. Plasma zinc, vitamin B(12) and alpha-tocopherol are positively and plasma gamma-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Public Health Nutr. 2013;16:1354–61.CrossRefGoogle Scholar
  30. 30.
    Stolk RP, Rosmalen JG, Postma DS, de Boer RA, Navis G, Slaets JP, Ormel J, Wolffenbuttel BH. Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur J Epidemiol. 2008;23:67–74.CrossRefGoogle Scholar
  31. 31.
    Talwar D, Quasim T, McMillan DC, Kinsella J, Williamson C, O’Reilly DS. Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792:333–43.CrossRefGoogle Scholar
  32. 32.
    Thurnham DI, Davies JA, Crump BJ, Situnayake RD, Davis M. The use of different lipids to express serum tocopherol: lipid ratios for the measurement of vitamin E status. Ann Clin Biochem. 1986;23(Pt 5):514–20.CrossRefGoogle Scholar
  33. 33.
    Traber MG, Mah E, Leonard SW, Bobe G, Bruno RS. Metabolic syndrome increases dietary alpha-tocopherol requirements as assessed using urinary and plasma vitamin E catabolites: a double-blind, crossover clinical trial. Am J Clin Nutr. 2017;105:571–9.CrossRefGoogle Scholar
  34. 34.
    van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, Navis G. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19:387–95.CrossRefGoogle Scholar
  35. 35.
    Waniek S, di Giuseppe R, Esatbeyoglu T, Ratjen I, Enderle J, Jacobs G, Nothlings U, Koch M, Schlesinger S, Rimbach G, Lieb W. Association of circulating vitamin E (alpha- and gamma-Tocopherol) levels with gallstone disease. Nutrients. 2018;10(2):133.CrossRefGoogle Scholar
  36. 36.
    Zou Y, Wang DH, Sakano N, Sato Y, Iwanaga S, Taketa K, Kubo M, Takemoto K, Masatomi C, Inoue K, Ogino K. Associations of serum retinol, alpha-tocopherol, and gamma-tocopherol with biomarkers among healthy Japanese men. Int J Environ Res Public Health. 2014;11:1647–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isidor Minović
    • 1
  • Camilo G. Sotomayor
    • 2
  • Manfred Eggersdorfer
    • 3
  • Ineke J. Riphagen
    • 1
  • Martin H. de Borst
    • 2
  • Louise H. Dekker
    • 2
  • Gerjan Navis
    • 2
  • Ilja M. Nolte
    • 4
  • Sander K. R. van Zon
    • 5
  • Sijmen A. Reijneveld
    • 5
  • Jan C. van der Molen
    • 1
  • Wilhelmina H. A. de Jong
    • 1
  • Jenny E. Kootstra-Ros
    • 1
  • Ido P. Kema
    • 1
  • Stephan J. L. Bakker
    • 2
    Email author
  1. 1.Department of Laboratory MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  3. 3.University Medical Center GroningenHanzeplain 1GroningenThe Netherlands
  4. 4.Department of EpidemiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  5. 5.Department of Health SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations