Advertisement

The Challenge of Defining Daily Intake Recommendations: Vitamin E and Polyunsaturated Fatty Acids

  • Daniel RaederstorffEmail author
  • Szabolcs Péter
  • Peter Weber
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Dietary intake recommendations for the essential micronutrient vitamin E established in many countries vary, and it appears to be still a challenge to define these despite the wealth of data published. The approaches and markers used to define vitamin E intake in the reports from the European Food Safety Authority (EFSA), the Nordic Nutrition Recommendations (NNR), and the Institute of Medicine (IOM) are being looked at as they are based on very comprehensive reviews and recently published. Though the rationale, concept, and markers used by these agencies to define vitamin E intake are quite different, based on the same scientific evidence, it is of interest that they actually all appreciate the fundamental role of the lipid-soluble essential micronutrient vitamin E in protecting PUFA from oxidation; however they also raise a number of questions how to use these data. The animal and human data indicate that the amount of vitamin E needed to keep PUFAs functional in cell membrane is related to the intake of PUFAs. Thus, in addition to a basal vitamin E requirement, an additional requirement for dietary PUFAs should be considered. Given the proposed health benefits of omega-3 PUFA and the recommendations to increase in particular the long-chain PUFA, we think it is important to revisit the evidence on the interaction of vitamin E and the amount needed to protect PUFA from being oxidized.

Keywords

Vitamin E recommendations, PUFA, Omega-3 LC-PUFA, α-tocopherol, Requirement 

References

  1. 1.
  2. 2.
    EFSA NDA Panel (EFSA Panel on Dietetic Products NaA). Scientific opinion on dietary reference values for vitamin E as α-tocopherol. EFSA J. 2015;13(7):4149.  https://doi.org/10.2903/j.efsa.2015.4149.CrossRefGoogle Scholar
  3. 3.
    Nordic Nutrition Recommendations 2012. Integrating nutrition and physical activity. 5th ed. Arhus: Nordic Council of Ministers; 2014.  https://doi.org/10.6027/Nord2014-002.
  4. 4.
    IOM. Vitamin E. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academies Press (US); 2000. p. 186–283.Google Scholar
  5. 5.
    Zhang X, Feng M, Liu F, Qin L, Qu R, Li D, et al. Subacute oral toxicity of BDE-15, CDE-15, and HODE-15 in ICR male mice: assessing effects on hepatic oxidative stress and metals status and ascertaining the protective role of vitamin E. Environ Sci Pollut Res Int. 2014;21(3):1924–35.  https://doi.org/10.1007/s11356-013-2084-0.CrossRefPubMedGoogle Scholar
  6. 6.
    Boda V, Finckh B, Durken M, Commentz J, Hellwege HH, Kohlschutter A. Monitoring erythrocyte free radical resistance in neonatal blood microsamples using a peroxyl radical-mediated haemolysis test. Scand J Clin Lab Invest. 1998;58(4):317–22.CrossRefGoogle Scholar
  7. 7.
    Sokol RJ, Kayden HJ, Bettis DB, Traber MG, Neville H, Ringel S, et al. Isolated vitamin E deficiency in the absence of fat malabsorption – familial and sporadic cases: characterization and investigation of causes. J Lab Clin Med. 1988;111(5):548–59.PubMedGoogle Scholar
  8. 8.
    EFSA NDA Panel (EFSA Panel on Dietetic Products NaA). Scientific opinion on the substantiation of health claims related to vitamin E and protection of DNA, proteins and lipids from oxidative damage. EFSA J. 2010;8(10):1816.  https://doi.org/10.2903/j.efsa.2010.1816.CrossRefGoogle Scholar
  9. 9.
    Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci. 1989;570:7–22.CrossRefGoogle Scholar
  10. 10.
    Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12.  https://doi.org/10.1016/j.freeradbiomed.2013.03.022.CrossRefPubMedGoogle Scholar
  11. 11.
    Food and Nutrition Board IoM. Dietary reference intake for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academies Press; 2000.Google Scholar
  12. 12.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.  https://doi.org/10.1097/WOX.0b013e3182439613.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Witting LA. The role of polyunsaturated fatty acids in determining vitamin E requirement. Ann N Y Acad Sci. 1972;203:192–8.CrossRefGoogle Scholar
  14. 14.
    Witting LA, Horwitt MK. Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr. 1964;82:19–33.CrossRefGoogle Scholar
  15. 15.
    Muggli R. Physiological requirements of vitamin E as a function of the amount and type of polyunsaturated fatty acid. World Rev Nutr Diet. 1994;75:166–8.CrossRefGoogle Scholar
  16. 16.
    Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126(1):1–27.CrossRefGoogle Scholar
  17. 17.
    Calder PC. Docosahexaenoic acid. Ann Nutr Metab. 2016;69(Suppl 1):7–21.  https://doi.org/10.1159/000448262.CrossRefPubMedGoogle Scholar
  18. 18.
    Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N Jr. The essentiality of arachidonic acid in infant development. Nutrients. 2016;8(4):216.  https://doi.org/10.3390/nu8040216.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    von Schacky C. Omega-3 fatty acids in cardiovascular disease – an uphill battle. Prostaglandins Leukot Essent Fatty Acids. 2015;92:41–7.  https://doi.org/10.1016/j.plefa.2014.05.004.CrossRefGoogle Scholar
  20. 20.
    Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67.  https://doi.org/10.1016/j.jacc.2011.06.063.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen GC, Yang J, Eggersdorfer M, Zhang W, Qin LQ. N-3 long-chain polyunsaturated fatty acids and risk of all-cause mortality among general populations: a meta-analysis. Sci Rep. 2016;6:28165.  https://doi.org/10.1038/srep28165.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alexander DD, Miller PE, Van Elswyk ME, Kuratko CN, Bylsma LC. A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clin Proc. 2017;92(1):15–29.  https://doi.org/10.1016/j.mayocp.2016.10.018.CrossRefPubMedGoogle Scholar
  23. 23.
    Mori TA. Dietary n-3 PUFA and CVD: a review of the evidence. Proc Nutr Soc. 2014;73(1):57–64.  https://doi.org/10.1017/s0029665113003583.CrossRefPubMedGoogle Scholar
  24. 24.
    Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98(5):873–7.  https://doi.org/10.1017/s0007114507764747.CrossRefPubMedGoogle Scholar
  25. 25.
    Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ. 2014;348:g2272.  https://doi.org/10.1136/bmj.g2272.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P. Dietary surveys indicate vitamin intakes below recommendations are common in representative western countries. Br J Nutr. 2012;108(4):692–8.  https://doi.org/10.1017/s0007114512001808.CrossRefPubMedGoogle Scholar
  27. 27.
    Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res. 2010;54(5):641–51.  https://doi.org/10.1002/mnfr.200900439.CrossRefPubMedGoogle Scholar
  28. 28.
    Marquardt D, Williams JA, Kucerka N, Atkinson J, Wassall SR, Katsaras J, et al. Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J Am Chem Soc. 2013;135(20):7523–33.  https://doi.org/10.1021/ja312665r.CrossRefPubMedGoogle Scholar
  29. 29.
    Tanito M, Yoshida Y, Kaidzu S, Chen ZH, Cynshi O, Jishage K, et al. Acceleration of age-related changes in the retina in alpha-tocopherol transfer protein null mice fed a Vitamin E-deficient diet. Invest Ophthalmol Vis Sci. 2007;48(1):396–404.  https://doi.org/10.1167/iovs.06-0872.CrossRefPubMedGoogle Scholar
  30. 30.
    Lebold KM, Jump DB, Miller GW, Wright CL, Labut EM, Barton CL, et al. Vitamin E deficiency decreases long-chain PUFA in zebrafish (Danio rerio). J Nutr. 2011;141(12):2113–8.  https://doi.org/10.3945/jn.111.144279.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lebold KM, Kirkwood JS, Taylor AW, Choi J, Barton CL, Miller GW, et al. Novel liquid chromatography-mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos. Redox Biol. 2013;2:105–13.  https://doi.org/10.1016/j.redox.2013.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lebold KM, Kirkwood JS, Taylor AW, Choi J, Barton CL, Miller GW, et al. Novel liquid chromatography-mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos. Redox Biol. 2014;2:105–13.  https://doi.org/10.1016/j.redox.2013.12.007.CrossRefGoogle Scholar
  33. 33.
    McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med. 2017;110:250–60.  https://doi.org/10.1016/j.freeradbiomed.2017.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med. 2017;112:308–17.  https://doi.org/10.1016/j.freeradbiomed.2017.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Harris PL, Embree ND. Quantitative consideration of the effect of polyunsaturated fatty acid content of the diet upon the requirements for vitamin E. Am J Clin Nutr. 1963;13:385–92.CrossRefGoogle Scholar
  36. 36.
    Bieri JG, Poukka Evarts RH. Vitamin E nutrition in the rhesus monkey. Proc Soc Exp Biol Med. 1972;140(4):1162–5.CrossRefGoogle Scholar
  37. 37.
    Murphy SP, Subar AF, Block G. Vitamin E intakes and sources in the United States. Am J Clin Nutr. 1990;52(2):361–7.CrossRefGoogle Scholar
  38. 38.
    Bieri JG, Evarts RP. Tocopherols and fatty acids in American diets. The recommended allowance for vitamin E. J Am Diet Assoc. 1973;62(2):147–51.PubMedGoogle Scholar
  39. 39.
    Dayton S, Hashimoto S, Rosenblum D, Pearce ML. Vitamin E status of humans during prolonged feeding of unsaturated fats. J Lab Clin Med. 1965;65:739–47.PubMedGoogle Scholar
  40. 40.
    Witting LA, Lee L. Dietary levels of vitamin E and polyunsaturated fatty acids and plasma vitamin E. Am J Clin Nutr. 1975;28(6):571–6.CrossRefGoogle Scholar
  41. 41.
    Horwitt MK, Harvey CC, Duncan GD, Wilson WC. Effects of limited tocopherol intake in man with relationships to erythrocyte hemolysis and lipid oxidations. Am J Clin Nutr. 1956;4(4):408–19.CrossRefGoogle Scholar
  42. 42.
    Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr. 1960;8:451–61.CrossRefGoogle Scholar
  43. 43.
    Horwitt MK. Status of human requirements for vitamin E. Am J Clin Nutr. 1974;27(10):1182–93.CrossRefGoogle Scholar
  44. 44.
    Horwitt MK. Interpretations of requirements for thiamin, riboflavin, niacin-tryptophan, and vitamin E plus comments on balance studies and vitamin B-6. Am J Clin Nutr. 1986;44(6):973–85.CrossRefGoogle Scholar
  45. 45.
    Valk EE, Hornstra G. Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: a review. Int J Vitam Nutr Res. 2000;70(2):31–42.CrossRefGoogle Scholar
  46. 46.
    Witting LA. Vitamin E – polyunsaturated lipid relationship in diet and tissues. Am J Clin Nutr. 1974;27(9):952–9.CrossRefGoogle Scholar
  47. 47.
    Witting LA. Recommended dietary allowance for vitamin E. Am J Clin Nutr. 1972;25(3):257–61.CrossRefGoogle Scholar
  48. 48.
    Raederstorff D, Wyss A, Calder PC, Weber P, Eggersdorfer M. Vitamin E function and requirements in relation to PUFA. Br J Nutr. 2015;114(8):1113–22.  https://doi.org/10.1017/s000711451500272x.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Elmadfa I, Kornsteiner M. Dietary fat intake – a global perspective. Ann Nutr Metab. 2009;54(Suppl 1):8–14.  https://doi.org/10.1159/000220822.CrossRefPubMedGoogle Scholar
  50. 50.
    Linseisen J, Schulze MB, Saadatian-Elahi M, Kroke A, Miller AB, Boeing H. Quantity and quality of dietary fat, carbohydrate, and fiber intake in the German EPIC cohorts. Ann Nutr Metab. 2003;47(1):37–46.  https://doi.org/10.1159/000068911.CrossRefPubMedGoogle Scholar
  51. 51.
    DACH DGfE. 2000. Österreichische gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung. Referenzwerte für die Nährstoffzufuhr. Frankfurt am Main.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Raederstorff
    • 1
    Email author
  • Szabolcs Péter
    • 2
  • Peter Weber
    • 3
  1. 1.R&D Human Nutrition & HealthDSM Nutritional Products LtdBaselSwitzerland
  2. 2.DSM Nutritional Products Ltd.KaiseraugstSwitzerland
  3. 3.Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany

Personalised recommendations