Using Task Descriptions with Explicit Representation of Allocation of Functions, Authority and Responsibility to Design and Assess Automation

  • Elodie Bouzekri
  • Alexandre Canny
  • Célia MartinieEmail author
  • Philippe Palanque
  • Christine Gris
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 544)


Automation can be considered as a design alternative that brings the benefits of reducing the potential for human error and of increasing performance. However, badly designed automations, of which some of them are called automation surprises, can have a very negative impact on the overall performance of the couple operator/system. Automation design requires the definition of three specific aspects defining the relationship between the user and the system: allocation of functions, authority and responsibility. While these abstract concepts are usually well understood at a high level of abstraction, their integration within a development process is cumbersome. This paper presents an approach based on task models to explicitly handle those concepts. We show how such concepts can be integrated in a task modeling notation and illustrate on a case study how this notation can be used to describe design alternatives with different allocation of functions, authority and responsibility between the user and the system. Exploiting the case study, we demonstrate that embedding explicitly these concepts in a notation supports analysis and assessment of automation designs.


Automation design and assessment Task modeling Allocation of functions Authority Responsibility 


  1. 1.
    Bainbridge, L.: Ironies of automation. Automatica 19, 775–780 (1983)CrossRefGoogle Scholar
  2. 2.
    Barboni, E., Ladry, J-F., Navarre, D., Palanque, P., Winckler, M.: Beyond modelling: an integrated environment supporting co-execution of tasks and systems models. In: Proceedings of EICS 2010, pp. 143–152. ACMGoogle Scholar
  3. 3.
    Basnyat, S., Navarre, D., Palanque, P.: Usability service continuation through reconfiguration of input and output devices in safety critical interactive systems. In: International Conference on Computer Safety, Reliability and Security (SAFECOMP 2008), Newscastle, UK (2008) Google Scholar
  4. 4.
    Boy, G.: Cognitive function analysis for human-centered automation of safety-critical systems. In: Proceedings of ACM CHI 1998, pp. 265–272 (1998)Google Scholar
  5. 5.
    Boy, G.: Orchestrating situation awareness and authority in complex socio-technical systems. In: Aiguier, M., Caseau, Y., Krob, D., Rauzy, A. (eds.) CSDM 2012, pp. 285–296. Springer, Heidelberg (2013). Scholar
  6. 6.
    Bradshaw, J.M., Hoffman, R.R., Woods, D.D., Johnson, M.: The seven deadly myths of “autonomous systems”. IEEE Intell. Syst. 28(3), 54–61 (2013)CrossRefGoogle Scholar
  7. 7.
    Cummings, M.L., Bruni, S.: Collaborative human–automation decision making. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 437–447. Springer, Heidelberg (2009). Scholar
  8. 8.
    Dearden, A., Harrison, M.D., Wright, P.C.: Allocation of function: scenarios, context and the economics of effort. Int. J. Hum.-Comput. Stud. 52(2), 289–318 (2000)CrossRefGoogle Scholar
  9. 9.
    Dictionary. English dictionary. Accessed Sept 2018
  10. 10.
    Dittmar, A., Forbrig, P.: Selective modeling to support task migratability of interactive artifacts. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 571–588. Springer, Heidelberg (2011). Scholar
  11. 11.
    Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., Beller, J.: Towards a dynamic balance between humans and automation: Authority, ability, responsibility and control in shared and cooperative control situations. Cogn. Technol. Work 14(1), 3–18 (2012)CrossRefGoogle Scholar
  12. 12.
    Flemisch, F., Adams, C., Conway, S., Goodrich, K., et al.: The H metaphor as a guideline for vehicle automation and interaction, NASA TM, 2003-212672 (1975)Google Scholar
  13. 13.
    Fahssi, R., Martinie, C., Palanque, P.: Enhanced task modelling for systematic identification and explicit representation of human errors. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9299, pp. 192–212. Springer, Cham (2015). Scholar
  14. 14.
    Gombolay, M.C., Gutierrez, R.A., Clarke, S.G., Sturla, G.F., Shah, J.A.: Decision-making authority, team efficiency and human worker satisfaction in mixed human—robot teams. Auton. Robots 39(3), 293–312 (2015)CrossRefGoogle Scholar
  15. 15.
    J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems SAE International (2014)Google Scholar
  16. 16.
    Loer, K., Hildebrandt, M., Harrison, M.: Analysing dynamic function scheduling decisions. In: Johnson, C.W., Palanque, P. (eds.) Human Error, Safety and Systems Development. IIFIP, vol. 152, pp. 45–60. Springer, Boston, MA (2004). Scholar
  17. 17.
    Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to address scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 589–609. Springer, Heidelberg (2011). Scholar
  18. 18.
    Martinie, C., et al.: Formal tasks and systems models as a tool for specifying and assessing automation designs (regular paper). In: 1st International Conference on Application and Theory of Automation in Command and Control Systems (ATACCS 2011), Barcelona, Spain. ACM DL, May 2011Google Scholar
  19. 19.
    Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control. Hum. Factors 49, 57–75 (2007)CrossRefGoogle Scholar
  20. 20.
    Misra, J., Cook, W.R.: Computation orchestration: a basis for wide-area computing. J. Softw. Syst. Model. 6(1), 83–110 (2007). Scholar
  21. 21.
    Oxford. English Dictionnary. Accessed Apr 2018
  22. 22.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(3), 286–297 (2000)CrossRefGoogle Scholar
  23. 23.
    Pocock, S., Harrison, M.D., Wright, P.C., Johnson, P.: THEA: a technique for human error assessment early in design. In: INTERACT 2001, pp. 247–254 (2001)Google Scholar
  24. 24.
    Rovatsos, M., Diochnos, D.I., Wen, Z., Ceppi, S., Andreadis, P.: SmartOrch: an adaptive orchestration system for human-machine collectives. In: Proceedings of the Symposium on Applied Computing (SAC 2017), pp. 37–44. ACM, New York (2017)Google Scholar
  25. 25.
    Vagia, M., Transeth, A.A., Fjerdingen, S.A.: A literature review on the levels of automation during the years. What are the different taxonomies that have been proposed? Appl. Ergon. 53, 190–202 (2016)CrossRefGoogle Scholar
  26. 26.
    Wright, P.C., Dearden, A., Fields, B.: Function allocation: a perspective from studies of work practice. Int. J. Hum.-Comput. Stud. 52(2), 335–355 (2000)CrossRefGoogle Scholar
  27. 27.
    Yerkes, R.M., Dodson, J.D.: The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482 (1908)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Elodie Bouzekri
    • 1
  • Alexandre Canny
    • 1
  • Célia Martinie
    • 1
    Email author
  • Philippe Palanque
    • 1
    • 3
  • Christine Gris
    • 2
  1. 1.ICS-IRIT, University of Toulouse 3ToulouseFrance
  2. 2.Airbus Operations SASBlagnacFrance
  3. 3.Department of Industrial DesignTechnical University EindhovenEindhovenNetherlands

Personalised recommendations