Advertisement

Structure-Based Drug Design with a Special Emphasis on Herbal Extracts

  • D. VelmuruganEmail author
  • N. H. V. Kutumbarao
  • V. Viswanathan
  • Atanu Bhattacharjee
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 27)

Abstract

Structure-based drug design (SBDD) is a computational analysis of identifying ligands which can potentially inhibit the target. SBDD is a cluster of methods and modules which reduces the cost and time spent on experimental procedures. SBDD plays a crucial role in preclinical drug development procedures. There is a vast development in techniques and methods related to theoretical physics and chemistry, computers processers, and pharmacokinetic analysis which helps in elucidating the biological role of ligands and their receptors. Here, the general theoretical backgrounds of various SBDD and simulation approaches employed are discussed. These methods are also discussed with respect to the identification of potential drug-like molecules from natural sources to control human ailments.

Keywords

Docking Molecular simulations Pharmacophore Force field Crystallography Natural products 

Notes

Acknowledgements

The authors would like to thank Dr. C. Ramakrishnan, Postdoctoral Fellow, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, for his kind help in the revising of the manuscript.

References

  1. 1.
    Quanta/InsightII/Cerius2. Molecular Simulations Inc., 9685 Scranton Road, San Diego, CA 92121-3752 Google Scholar
  2. 2.
    Sybyl. Tripos, Inc., 1699 South Hanley Road, St. Louis, MO 63144-2913Google Scholar
  3. 3.
    CAChe. CAChe Scientific, Inc., P.O. Box 4003, Beaverton, OR 97076Google Scholar
  4. 4.
    MacroModel. Department of Chemistry, Columbia University, New York, NY 10032Google Scholar
  5. 5.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C et al (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784CrossRefGoogle Scholar
  6. 6.
    DeLano WL (2002) The PyMOL molecular graphics system. http://pymol.org
  7. 7.
    Rosenfeld R, Vajda S, DeLisi C (1995) Flexible docking and design. Annu Rev Biophys Biomol Struct 24:677–700PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5:224–228PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jones G, Willett P (1995) Docking smallmolecule ligands into active sites. Curr Opin Biotechnol 6:652–656PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design. Acc Chem Res 27:117–123CrossRefGoogle Scholar
  11. 11.
    Schoichet BK, Kuntz ID (1996) Predicting the structure of protein complexes: a step in the right direction. Chem Biol 3:151–156CrossRefGoogle Scholar
  12. 12.
    Straatsma TP, McCammon JA (1992) Computational alchemy. Annu Rev Phys Chem 43:407–435CrossRefGoogle Scholar
  13. 13.
    Tembe BL, McCammon JA (1984) Ligand-receptor interactions. Comput Chem 8:281–283CrossRefGoogle Scholar
  14. 14.
    Rami Reddy M, Bacquet RJ, Zichi D, Matthews DA, Welsh KM et al (1992) Calculation of solvation and binding free energy differences for folate-based inhibitors of the enzyme thymidylate synthase. J Am Chem Soc 114:10117–10122CrossRefGoogle Scholar
  15. 15.
    Wlodek ST, Antosiewicz J, McCammon JA, Straatsma TP, Gilson MK et al (1996) Binding of tacrine and 6-chlorotacrine by acetylcholinesterase. Biopolymers 38:109–117PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Marrone TJ, Straatsma TP, Briggs JM, Wilson DK, Quiocho FA, McCammon JA (1996) Theoretical study of inhibition of adenosine deaminase by 8Rcoformycin and 8R-deoxycoformycin. J Med Chem 39:277–284PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Damewood JR Jr (1996) Peptide mimetic design with the aid of computational chemistry. Reviews in computational chemistry, In: Lipkowitz KB, Boyd DB (ed), vol 9. VCH Publishers, New York, pp 1–79Google Scholar
  18. 18.
    Borman S (2005) Drug by design. C&EN, Washington, DCGoogle Scholar
  19. 19.
    Sumner JB (1926) The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem 69(2):435–441Google Scholar
  20. 20.
    Sumner JB, Dounce AL (1937) Crystalline catalase. J Biol Chem 121(2):417–424Google Scholar
  21. 21.
    Northrop JH, Kunitz M, Herriott RM (1948) Crystalline Enzymes, Columbia Biological Series, No. 12. Columbia University Press, New York, 16, p 305Google Scholar
  22. 22.
    Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27(1):249–284PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Das K, Ding J, Hsiou Y, Clark AD, Moereels H, Koymans L, Andries K, Pauwels R, Janssen PA, Boyer PL, Smith RH Jr, Kroeger Smith MB, Michejda CJ, Hughes SH, Arnold E, Clark P (1996) Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol 264(5):1085–1100PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hsiou Y, Das K, Ding J, Clark AD, Kleim JP, Rösner M, Winkler I, Riess G, Hughes SH, Arnold E (1998). Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. J Mol Biol 284(2):313–323Google Scholar
  25. 25.
    Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282(5394):1669–1675PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ren J, Esnouf RM, Hopkins AL, Jones EY, Kirby I, Keeling J, Ross CK, Larder BA, Stuart DI, Stammers DK (1998) 3′-Azido-3′-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long range conformational changes. Proc Natl Acad Sci 95(16):9518–9523CrossRefGoogle Scholar
  27. 27.
    Sarafianos SG, Das K, Clark AD, Ding J, Boyer PL, Hughes SH, Arnold E (1999) Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with ß-branched amino acids. Proc Natl Acad Sci 96(18):10027–10032PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology, vol 1983. Benjamin-Cummings Publishing CompanyGoogle Scholar
  29. 29.
    Williams DP, Naisbitt DJ (2002) Toxicophores: groups and metabolic routes associated with increased safety risk. Curr Opin Drug Discov Devel 5(1):104–115PubMedPubMedCentralGoogle Scholar
  30. 30.
    Aishima J, Owen RL, Axford D, Shepherd E, Winter G, Levik K, Gibbons P, Ashton A, Evans G (2010) High-speed crystal detection and characterization using a fast-readout detector. Acta Crystallogr Sect D: Biol Crystallogr 66(9):1032–1035CrossRefGoogle Scholar
  31. 31.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D: Biol Crystallogr 67(4):235–242PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178CrossRefGoogle Scholar
  33. 33.
    Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1(11):882–894CrossRefGoogle Scholar
  34. 34.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949CrossRefGoogle Scholar
  36. 36.
    Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612):709–713PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16(5):548–558CrossRefGoogle Scholar
  38. 38.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Goodsell DS, Lauble H, Stout CD, Olson AJ (1993) Automated docking in crystallography: analysis of the substrates of aconitase. Proteins: Struct, Funct, Bioinf 17(1):1–10CrossRefGoogle Scholar
  40. 40.
    Chemical Computing Group. MOE (2003) Montreal. Quebec, CanadaGoogle Scholar
  41. 41.
  42. 42.
    Westhead DR, Clark DE, Murray CW (1997) A comparison of heuristic search algorithms for molecular docking. J Comput Aided Mol Des 11(3):209–228PubMedCrossRefGoogle Scholar
  43. 43.
    Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428PubMedCrossRefGoogle Scholar
  44. 44.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749PubMedCrossRefGoogle Scholar
  46. 46.
    Welch W, Ruppert J, Jain AN (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3(6):449–462PubMedCrossRefGoogle Scholar
  47. 47.
    Kearsley SK, Underwood DJ, Sheridan RP, Miller MD (1994) Flexibases: a way to enhance the use of molecular docking methods. J Comput Aided Mol Des 8(5):565–582PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Knegtel RM, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266(2):424–440PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins: Struct, Funct, Bioinf 37(2):228–241CrossRefGoogle Scholar
  50. 50.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins: Struct, Funct, Bioinf 52(4):609–623CrossRefGoogle Scholar
  51. 51.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRefGoogle Scholar
  52. 52.
    Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8(3):243–256PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Böhm HJ (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12(4):309–323PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5):425–445PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wang R, Liu L, Lai L, Tang Y (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J Mol Model 4(12):379–394CrossRefGoogle Scholar
  56. 56.
    Tao P, Lai L (2001) Protein ligand docking based on empirical method for binding affinity estimation. J Comput Aided Mol Des 15(5):429–446PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Rognan D, Lauemøller SL, Holm A, Buus S, Tschinke V (1999) Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J Med Chem 42(22):4650–4658PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Muegge I (2000) A knowledge-based scoring function for protein-ligand interactions: probing the reference state. Perspect Drug Discov Des 20(1):99–114CrossRefGoogle Scholar
  60. 60.
    Muegge I (2001) Effect of ligand volume correction on PMF scoring. J Comput Chem 22(4):418–425CrossRefGoogle Scholar
  61. 61.
    Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    DeWitte RS, Shakhnovich EI (1996) SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 118(47):11733–11744CrossRefGoogle Scholar
  64. 64.
    Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. The J Phys Chem 79(22):2361–2381CrossRefGoogle Scholar
  65. 65.
    Nemethy G, Pottle MS, Scheraga HA (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. The J Phys Chem 87(11):1883–1887CrossRefGoogle Scholar
  66. 66.
    Lifson S, Warshel A (1968) Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49(11):5116–5129CrossRefGoogle Scholar
  67. 67.
    Hagler AT, Huler E, Lifson S (1974) Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J Am Chem Soc 96(17):5319–5327PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hagler AT, Lifson S (1974) Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. J Am Chem Soc 96(17):5327–5335PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103(2):335–340CrossRefGoogle Scholar
  70. 70.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106(3):765–784CrossRefGoogle Scholar
  71. 71.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197CrossRefGoogle Scholar
  72. 72.
    Damm W, van Gunsteren WF (2000) Reversible peptide folding: dependence on molecular force field used. J Comput Chem 21(9):774–787CrossRefGoogle Scholar
  73. 73.
    García AE, Sanbonmatsu KY (2001) Exploring the energy landscape of a ß hairpin in explicit solvent. Proteins: Struct, Funct, Bioinf 42(3):345–354CrossRefGoogle Scholar
  74. 74.
    Mitsutake A, Sugita Y, Okamoto Y (2001) Generalized-ensemble algorithms for molecular simulations of biopolymers. Pept Sci 60(2):96–123CrossRefGoogle Scholar
  75. 75.
    García AE, Sanbonmatsu KY (2002) a-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci 99(5):2782–2787PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Simmerling C, Strockbine B, Roitberg AE (2002) All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 124(38):11258–11259PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217CrossRefGoogle Scholar
  78. 78.
    Lexa KW, Carlson HA (2010) Full protein flexibility is essential for proper hot-spot mapping. J Am Chem Soc 133(2):200–202PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jazayeri A, Dias JM, Marshall FH (2015) From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem 290(32):19489–19495PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Singh R, Singh S, Nath Pandey P (2016) In-silico analysis of Sirt2 from Schistosoma monsoni:structures, conformations and interactions with inhibitors. J Biomol Struct Dyn 34(5):1042–1051.  https://doi.org/10.1080/07391102.2015.1065205CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Alvarez Dorta D, Sivignon A, Chalopin T et al (2016) The antiadhesive strategy in Crohn’s disease: orally active mannosides to decolonize pathogenic Escherichia coli from the gut. ChemBioChem 17(10):936–952PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Amin KM, Anwar MM, Kamel MM, Kassem EM, Syam YM, Elseginy SA (2013) Synthesis, cytotoxic evaluation and molecular docking study of novel quinazoline derivatives as PARP-1 inhibitors. Acta Pol Pharm 70(5):833–849PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sabbah DA, Saada M, Khalaf RA et al (2015) Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kalpha). Bioorg Med Chem Lett 25(16):3120–3124PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Frederick R, Robert S, Charlier C et al (2005) 3,6-disubstituted coumarins as mechanism-based inhibitors of thrombin and factor Xa. J Med Chem 48(24):7592–7603PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dong MH, Chen HF, Ren YJ, Shao FM (2016) Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors. Bioorg Med Chem 24(2):73–84PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mena-Ulecia K, Tiznado W, Caballero J (2015) Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA. PLoS ONE 10(11):e0142774PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Vitoria M, Granich R, Gilks CF et al (2009) The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives. Am J Clin Pathol 131(6):844–848PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wodak SJ, Janin J (1978) Computer analysis of protein-protein interaction. J Mol Biol 124(2):323–342PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Janin J, Henrick K, Moult J et al (2003) CAPRI: a critical assessment of predicted interactions. Proteins. 52(1):2–9PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lensink MF, Wodak SJ (2010) Blind predictions of protein interfaces by docking calculations in CAPRI. Proteins 78(15):3085–3095PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Fleishman SJ, Whitehead TA, Strauch EM et al (2011) Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 414(2):289–302PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    May A, Zacharias M (2007) Protein-protein docking in CAPRI using ATTRACT to account for global and local flexibility. Proteins 69(4):774–780PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sable R, Jois S (2015) Surfing the protein-protein interaction surface using docking methods: application to the design of PPI inhibitors. Molecules 20(6):11569–11603PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bier D, Thiel P, Briels J, Ottmann C (2015) Stabilization of protein-protein interactions in chemical biology and drug discovery. Prog Biophys Mol Biol 119(1):10–19PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Persico M, Di Dato A, Orteca N et al (2015) From protein communication to drug discovery. Curr Top Med Chem 15(20):2019–2031PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kuenemann MA, Sperandio O, Labbe CM, Lagorce D, Miteva MA, Villoutreix BO (2015) In silico design of low molecular weight protein-protein interaction inhibitors: overall concept and recent advances. Prog Biophys Mol Biol 119(1):20–32PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Pons C, Glaser F, Fernandez-Recio J (2011) Prediction of protein-binding areas by small-world residue networks and application to docking. BMC Bioinform 12:378CrossRefGoogle Scholar
  100. 100.
    Chang S, Jiao X, Li CH, Gong XQ, Chen WZ, Wang CX (2008) Amino acid network and its scoring application in protein-protein docking. Biophys Chem 134(3):111–118CrossRefGoogle Scholar
  101. 101.
    del Sol A, O’Meara P (2005) Small-world network approach to identify key residues in protein-protein interaction. Proteins 58(3):672–682PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hammad N, Jingdong J (2013) Structure-based protein-protein interaction networks and drug design. Quant Biol 1(Issue 3):183–191Google Scholar
  103. 103.
    Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30(2):159–164PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Mestres J, Gregori-Puigjane E, Valverde S, Sole RV (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst 5(9):1051–1057PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 21(2):189–199PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yang L, Chen J, He L (2009) Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome. PLoS Comput Biol 5(7):e1000441PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ben-Naim A (2002) Molecular recognition—viewed through the eyes of the solvent. Biophys Chem 10(1–102):309–319CrossRefGoogle Scholar
  108. 108.
    Bienstock RJ (2015) Solvation methods for protein-ligand docking. Methods Mol Biol 1289:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Zhang L, Yang Y, Kao YT, Wang L, Zhong D (2009) Protein hydration dynamics and molecular mechanism of coupled water-protein fluctuations. J Am Chem Soc 131(30):10677–10691PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Schutz CN, Warshel A (2001) What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44(4):400–417PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1(8):515–548CrossRefGoogle Scholar
  112. 112.
    Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60(4):1545–1557CrossRefGoogle Scholar
  113. 113.
    Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Intermolecular forces. Springer, Netherlands, pp 331–342Google Scholar
  114. 114.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  115. 115.
    Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112(20):8910–8922CrossRefGoogle Scholar
  116. 116.
    Klamt A, Schüürmann GJGJ (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2(5):799–805CrossRefGoogle Scholar
  117. 117.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129CrossRefGoogle Scholar
  118. 118.
    Bashford D, Case DA (2000) Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 51(1):129–152PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23(1):128–137PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1–3):57–95CrossRefGoogle Scholar
  121. 121.
    Qiu D, Shenkin PS, Hollinger FP, Still WC (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. The J Phys Chem A 101(16):3005–3014CrossRefGoogle Scholar
  122. 122.
    Ghosh S, Nie A, An J, Huang Z (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10(3):194–202PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Verlinde CL, Fan E, Shibata S, Zhang Z, Sun Z, Deng W, Ross J, Kim J, Xiao L, Arakaki TL, Bosch J, Bosch J, Caruthers JM, Larson ET, Letrong I, Napuli A, Kelly A, Mueller N, Zucker F, Van Voorhis WC, Buckner FS, Merritt EA, Hol WG (2009) Fragment-based cocktail crystallography by the medical structural genomics of pathogenic protozoa consortium. Curr Top Med Chem 9(18):1678–1687PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Smallmolecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. In: Proceedings of the National Academy of Sciences of the United States of America, 109, pp 5299–5304Google Scholar
  127. 127.
    Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angewandte Chemie 124(25):6244–6247CrossRefGoogle Scholar
  128. 128.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yin Z, Whittell LR, Wang Y, Jergic S, Liu M, Harry EJ, Dixon NE, Beck JL, Kelso MJ, Oakley AJ (2014) Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach. J Med Chem 57(6):2799–2806PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Darby JF, Landström J, Roth C, He Y, Davies GJ, Hubbard RE (2014) Discovery of Selective Small-Molecule Activators of a Bacterial Glycoside Hydrolase. Angew Chem Int Ed 53(49):13419–13423CrossRefGoogle Scholar
  131. 131.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lau WF, Withka JM, Hepworth D, Magee TV, Du YJ, Bakken GA, Miller MD, Hendsch ZS, Thanabal V, Kolodziej SA, Hu Q, Narasimhan LS, Love R, Charlton ME, Hughes S, van Hoorn WP, Mills JE, Xing L (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput-Aided Mol Des 25(7):621PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Doak BC, Morton CJ, Simpson JS, Scanlon MJ (2014) Design and evaluation of the performance of an NMR screening fragment library. Aust J Chem 66(12):1465–1472CrossRefGoogle Scholar
  134. 134.
    Albert JS, Blomberg N, Breeze AL, Brown AJ, Burrows JN, Edwards PD, Folmer RH, Geschwindner S, Griffen EJ, Kenny PW, Nowak T, Olsson LL, Sanganee H, Shapiro AB (2007) An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca’s drug discovery programmes. Curr Top Med Chem 7(16):1600–1629PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Giannetti AM (2011) 8 From Experimental Design to Validated Hits: A Comprehensive Walk-Through of Fragment Lead Identification Using Surface Plasmon Resonance. Methods Enzymol 493:169PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Giannetti AM, Koch BD, Browner MF (2008) Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem 51(3):574–580PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Rich RL, Quinn JG, Morton T, Stepp JD, Myszka DG (2010) Biosensor-based fragment screening using FastStep injections. Anal Biochem 407(2):270–277PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Siegal G, Hollander JG (2009) Target immobilization and NMR screening of fragments in early drug discovery. Curr Top Med Chem 9(18):1736–1745PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Meiby E, Simmonite H, le Strat L, Davis B, Matassova N, Moore JD, Mrosek M, Murray J, Hubbard RE, Ohlson S (2013) Fragment screening by weak affinity chromatography: comparison with established techniques for screening against HSP90. Anal Chem 85(14):6756–6766PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Pollack SJ, Beyer KS, Lock C, Müller I, Sheppard D, Lipkin M, Hardick D, Blurton P, Leonard PM, Hubbard PA, Todd D, Richardson CM, Ahrens T, Baader M, Hafenbradl DO, Hilyard K, Bürli RW (2011) A comparative study of fragment screening methods on the p38a kinase: new methods, new insights. J Comput Aided Mol Des 25(7):677–687PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    FDA FY 2011 Innovative Drug Approvals; 2011Google Scholar
  142. 142.
    Erlanson DA (2011) Introduction to fragment-based drug discovery. In: Fragment-based drug discovery and X-ray crystallography. Springer, Berlin, pp 1–32Google Scholar
  143. 143.
    Dror O, Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem 11(1):71–90PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Guner OF (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2(12):1321–1332PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7(7):567–597PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Gund P (1977) Three-dimensional pharmacophoric pattern searching. Prog Mol Subcell Biol 5:117CrossRefGoogle Scholar
  147. 147.
    Poptodorov K, Luu T, Hoffmann RD (2006) Pharmacophore model generation software tools. Methods Princ Med Chem 32:17Google Scholar
  148. 148.
    Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13(1):23–29PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Potemkin V, Grishina M (2008) Principles for 3D/4D QSAR classification of drugs. Drug Discov Today 13(21):952–959PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128CrossRefGoogle Scholar
  151. 151.
    Montanya E (2012) A comparison of currently available GLP-1 receptor agonists for the treatment of type 2 diabetes. Expert Opin Pharmacother 13(10):1451–1467PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Heitz A, Avrutina O, Le-Nguyen D, Diederichsen U, Hernandez JF, Gracy J, Kolmar H, Chiche L (2008) Knottin cyclization: impact on structure and dynamics. BMC Struct Biol 8(1):54PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Gracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L (2007) KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res 36(suppl_1):D314–D319PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gould A, Ji Y, Aboye TL, Camarero JA (2011) Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 17(38):4294–4307PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Chan LY, Gunasekera S, Henriques ST, Worth NF, Le SJ, Clark RJ, Campbell JH, Craik DJ, Daly NL (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118(25):6709–6717PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84(1):41–68PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ (1999) Conotoxins and their potential pharmaceutical applications. Drug Dev Res 46(3–4 Special Issue: Biotechnology and Pharmacology in Australia):219–234CrossRefGoogle Scholar
  158. 158.
    Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Combes RD (2011) Challenges for computational structure–activity modelling for predicting chemical toxicity: future improvements? Expert Opi Drug Metabolism Toxicol 7(9):1129–1140CrossRefGoogle Scholar
  160. 160.
    Cavalla D (2013) Predictive methods in drug repurposing: gold mine or just a bigger haystack? Drug Discov Today 18(11):523–532PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Kuhn M, Campillos M, González P, Jensen LJ, Bork P (2008) Large-scale prediction of drug–target relationships. FEBS Lett 582(8):1283–1290PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Cheng F, Li W, Wu Z, Wang X, Zhang C, Li J, Liu G, Tang Y (2013). Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. J Chem Inf Model 53(4):753–762PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, Urban L, Whitebread S, Jenkins JL (2007) Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem 2(6):861–873PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Unterthiner T, Mayr A, Klambauer G, Steijaert M, Wegner JK, Ceulemans H, Hochreiter S (2014) Deep learning as an opportunity in virtual screening. In: Proceedings of the deep learning workshop at NIPSGoogle Scholar
  165. 165.
    Mestres J, Martín-Couce L, Gregori-Puigjané E, Cases M, Boyer S (2006) Ligand-based approach to in silico pharmacology: nuclear receptor profiling. J Chem Inf Model 46(6):2725–2736PubMedCrossRefGoogle Scholar
  166. 166.
    Gregori-Puigjané E, Mestres J (2008) A ligand-based approach to mining the chemogenomic space of drugs. Comb Chem High Throughput Screening 11(8):669–676CrossRefGoogle Scholar
  167. 167.
    Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38(6):983–996CrossRefGoogle Scholar
  168. 168.
    Zhou B, Wang R, Wu P, Kong DX (2015) Drug repurposing based on drug-drug interaction. Chem Biol Drug Des 85(2):137–144PubMedCrossRefGoogle Scholar
  169. 169.
    Gane PJ, Dean PM (2000) Recent advances in structure-based rational drug design. Curr Opin Struct Biol 10(4):401–404PubMedCrossRefGoogle Scholar
  170. 170.
    Alvarez JC (2004) High-throughput docking as a source of novel drug leads. Curr Opin Chem Biol 8(4):365–370PubMedCrossRefGoogle Scholar
  171. 171.
    Rarey M, Kramer B, Lengauer T (1999) The particle concept: placing discrete water molecules during protein-ligand docking predictions. Proteins: Struct Funct Bioinf 34(1):17–28CrossRefGoogle Scholar
  172. 172.
    Corbeil CR, Englebienne P, Moitessier N (2007) Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J Chem Inf Model 47(2):435–449PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749PubMedCrossRefGoogle Scholar
  175. 175.
    Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46(4):499–511CrossRefGoogle Scholar
  176. 176.
    Velec HF, Gohlke H, Klebe G (2005) DrugScoreCSD knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13(4):505–524CrossRefGoogle Scholar
  178. 178.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506CrossRefGoogle Scholar
  179. 179.
    McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11(4):333–344PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil AC (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharm 153(S1)CrossRefGoogle Scholar
  181. 181.
    Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32(1):335–373PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50(9):1561–1573PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Schrödinger L (2009) Schrödinger Suite 2009. LLC, New York, NYGoogle Scholar
  184. 184.
    Murakami M, Masuda S, Ichiro KUDO (2003) Arachidonate release and prostaglandin production by group IVC phospholipase A2 (cytosolic phospholipase A2gamma). Biochem J 372(3):695–702PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Singh N, Jabeen T, Sharma S, Somvanshi RK, Dey S, Srinivasan A, Singh TP (2006) Specific binding of non-steroidal anti-inflammatory drugs (NSAIDs) to phospholipase A2: structure of the complex formed between phospholipase A2 and diclofenac at 2.7 Å resolution. Acta Crystallogr D Biol Crystallogr 62(4):410–416PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Singh N, Kumar RP, Kumar S, Sharma S, Mir R, Kaur P, Srinivasan A, Singh TP (2009) Simultaneous inhibition of anti-coagulation and inflammation: crystal structure of phospholipase A2 complexed with indomethacin at 1.4 Å resolution reveals the presence of the new common ligand-binding site. J Mol Recognit 22(6):437–445PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Schevitz RW, Bach NJ, Carlson DG, Chirgadze NY, Clawson DK, Dillard RD, Draheim SE, Hartley LW, Jones ND, Mihelich ED, Olkowski JL (1995) Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nat Struct Mol Biol 2(6):458–465CrossRefGoogle Scholar
  188. 188.
    Cha SS, Lee D, Adams J, Kurdyla JT, Jones CS, Marshall LA, Bolognese B, Abdel-Meguid SS, Oh BH (1996) High-resolution X-ray crystallography reveals precise binding interactions between human nonpancreatic secreted phospholipase A2 and a highly potent inhibitor (FPL67047XX). J Med Chem 39(20):3878–3881PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Levinson NM, Boxer SG (2012) Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS ONE 7(4):e29828PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Gill AL, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D, O’Reilly M, Seavers LC, Davis DJ, Curry J, Anthony R, Padova A, Murray CW, Carr RA, Jhoti H (2005) Identification of novel p38a MAP kinase inhibitors using fragment-based lead generation. J Med Chem 48(2):414–426PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Xu ZB, Chaudhary D, Olland S, Wolfrom S, Czerwinski R, Malakian K, Lin L, Stahl ML, Joseph-McCarthy D, Benander C, Fitz L, Greco R, Somers WS, Mosyak L (2004) Catalytic domain crystal structure of protein kinase C-? (PKC?). J Biol Chem 279(48):50401–50409PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Burks HE, Abrams T, Kirby CA, Baird J, Fekete A, Hamann LG, Kim S, Lombardo F, Loo A, Lubicka D, Macchi K, McDonnell DP, Mishina Y, Norris JD, Nunez J, Saran C, Sun Y, Thomsen NM, Wang C, Wang J, Peukert S (2017) Discovery of an acrylic acid based tetrahydroisoquinoline as an orally bioavailable selective estrogen receptor degrader for ERa + breast cancer. J Med Chem 60(7):2790–2818PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Kinoshita JH, Nishimura C (1988) The involvement of aldose reductase in diabetic complications. Diabetes/Metabolism Res Rev 4(4):323–337CrossRefGoogle Scholar
  194. 194.
    Pugliese G, Tilton RG, Williamson JR (1991) Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabetes/Metabolism Res Rev 7(1):35–59CrossRefGoogle Scholar
  195. 195.
    Wilson DK, Bohren KM, Gabbay KH, Quiocho FA (1992) An unlikely sugar substrate site in the 1.65 A. Science 257:81PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33(8):2021–2032PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Velmurugan D, Malar Selvi U, Mythily U, Rao K, Rajarajeshwari R (2012) Structure-based discovery of anti-viral compounds for hepatitis B & C, human immunodeficiency, and dengue viruses. Curr Bioinform 7(2):187–211CrossRefGoogle Scholar
  198. 198.
    Velmurugan D, Mythily U, Rao K (2014) Design and docking studies of peptide inhibitors as potential antiviral drugs for dengue virus ns2b/ns3 protease. Protein Pept Lett 21(8):815–827PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Kutumbarao NHV, Velmurugan D (2016) Structural analysis and molecular modeling studies of fatty acids and peptides binding with NS2B/NS3 dengue protease. J Emerg Dis Virol 2(4); 2473-1846Google Scholar
  200. 200.
    Velmurugan D (2017) Designing, molecular docking and simulation studies of dengue protease inhibitors. Res J Med Allied Sci (RJMAS) 1(1)Google Scholar
  201. 201.
    Kutumbarao NHV, Ramakrishnan C, Balasubramanian K, Velmurugan D (2016) Computational assessment of inhibitory activity of acridone, xanthone and flavone derivatives against NS2B/NS3pro of Dengue Virus Type 2. J Emerg Dis Virol 2(4); 2473-1846Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Velmurugan
    • 1
    Email author
  • N. H. V. Kutumbarao
    • 1
  • V. Viswanathan
    • 1
  • Atanu Bhattacharjee
    • 2
  1. 1.CAS in Crystallography and Biophysics, University of MadrasChennaiIndia
  2. 2.Department of Biotechnology & BioinformaticsNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations