Advertisement

Integrated Chemoinformatics Approaches Toward Epigenetic Drug Discovery

  • Saurabh Loharch
  • Vikrant Karmahapatra
  • Pawan Gupta
  • Rethi Madathil
  • Raman ParkeshEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 27)

Abstract

Epigenetics has become an important field of research in drug discovery. Epigenetic mechanisms are dynamic in nature and play a fundamental role in cellular processes. Dysregulation of epigenetic events, including cross-talk between DNA methylation and histone modifications, not only affects gene expression but also causes pathophysiological effects leading to cancer, aging, cardiovascular, neurological, and metabolic disorders. Epigenetic targets have captured the attention of researchers from diverse backgrounds to identify potential drugs for various diseases. However, drug development is a complex, time-consuming process and challenged by the high attrition rate. As with many chemotherapeutics, it is pertinent to avoid possible risk factors in epigenetic drug discovery. In this context, computational approaches can rationally guide the search for active compounds by utilizing the accumulated epigenetics knowledge base. In this chapter, we have described the chemoinformatic strategies that can be applied to facilitate the early-stage lead discovery in epigenetics, based on current best practices.

Keywords

Chemoinformatics Epigenetics Drug discovery Screening library Scaffolds Chemical space 

Abbreviations

ATP

Adenosine triphosphate

CTCL

Cutaneous T cell lymphoma

DNA

Deoxyribonucleic acid

DNMT

DNA methyltransferase

FDA

Food and Drug Administration

HDAC

Histone deacetylases

miRNA

MicroRNA

RNA

Ribonucleic acid

References

  1. 1.
    IFPMA. The pharmaceutical industry and global health: Facts and Figures 2017. 2017; Available from: https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf
  2. 2.
    Hay M et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51PubMedCrossRefGoogle Scholar
  3. 3.
    Abraham AL et al (2012) Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms. PLoS Genet 8(9):e1002958PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Annu Rev Genet 48:237–268PubMedCrossRefGoogle Scholar
  6. 6.
    Epigenetics Drugs and Diagnostic Technologies Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012–2018Google Scholar
  7. 7.
    Raynal NJ et al (2017) Repositioning FDA-approved drugs in combination with epigenetic drugs to reprogram colon cancer epigenome. Mol Cancer Ther 16(2):397–407PubMedCrossRefGoogle Scholar
  8. 8.
    Mendez-Lucio O et al (2014) Toward drug repurposing in epigenetics: olsalazine as a hypomethylating compound active in a cellular context. ChemMedChem 9(3):560–565PubMedCrossRefGoogle Scholar
  9. 9.
    Raynal NJ et al. (2014) Discovery of new epigenetic drugs among FDA-approved drug libraries. Cancer Res. 74:19CrossRefGoogle Scholar
  10. 10.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bhattacharjee D, Shenoy S, Bairy KL (2016) DNA methylation and chromatin remodeling: the blueprint of cancer epigenetics. Scientifica (Cairo) 2016:6072357Google Scholar
  12. 12.
    Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sen P et al (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58PubMedPubMedCentralGoogle Scholar
  17. 17.
    Coppede F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 5:220PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee J et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Peedicayil J (2016) Epigenetic drugs for multiple sclerosis. Curr Neuropharmacol 14(1):3–9PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Relle M, Foehr B, Schwarting A (2015) Epigenetic aspects of systemic lupus erythematosus. Rheumatol Ther 2(1):33–46PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wu H et al (2015) The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 16(5):11013–11033PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hedrich CM (2017) Epigenetics in SLE. Curr Rheumatol Rep 19(9):58PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Klein K, Ospelt C, Gay S (2012) Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res Ther 14(6):227PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Z et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kaminskas E et al (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10(3):176–182PubMedCrossRefGoogle Scholar
  27. 27.
    Von Hoff DD, Slavik M, Muggia FM (1976) 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med 85(2):237–245CrossRefGoogle Scholar
  28. 28.
    Joeckel TE, Lubbert M (2012) Clinical results with the DNA hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: an update. Semin Hematol 49(4):330–341PubMedCrossRefGoogle Scholar
  29. 29.
    Mann BS et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252PubMedCrossRefGoogle Scholar
  30. 30.
    Galanis E et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Prince HM, Dickinson M (2012) Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res 18(13):3509–3515PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Iyer SP, Foss FF (2015) Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist 20(9):1084–1091PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Iwamoto FM et al (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neuro Oncol 13(5):509–516PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rashidi A, Cashen AF (2015) Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. Future Oncol 11(11):1659–1664PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chen YT et al (2016) The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother Pharmacol 77(4):757–765PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zeng D, Liu M, Pan J (2017) Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells. Oncotarget 8(2):3396–3411PubMedPubMedCentralGoogle Scholar
  38. 38.
    Bowers EM et al (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17(5):471–482PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Oike T et al (2014) C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol 111(2):222–227PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zhao D et al (2015) C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase, attenuates influenza A virus infection. Antimicrob Agents Chemother 60(3):1902–1906PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rau RE et al (2016) DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood 128(7):971–981PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wong M, Polly P, Liu T (2015) The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target. Am J Cancer Res 5(9):2823–2837PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang L et al (2016) JQ1, a small molecule inhibitor of BRD4, suppresses cell growth and invasion in oral squamous cell carcinoma. Oncol Rep 36(4):1989–1996PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Daigle SR et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Herold JM et al (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54(7):2504–2511PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Loharch S, et al (2015) EpiDBase: a manually curated database for small molecule modulators of epigenetic landscape. Database (Oxford), 2015Google Scholar
  47. 47.
    Huggins DJ, Venkitaraman AR, Spring DR (2011) Rational methods for the selection of diverse screening compounds. ACS Chem Biol 6(3):208–217PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Walters WP, Namchuk M (2003) Designing screens: how to make your hits a hit. Nat Rev Drug Discov 2(4):259–266PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Brenk R et al (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3(3):435–444PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39(15):2887–2893PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    McMillan M, Kahn M (2005) Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today 10(21):1467–1474PubMedCrossRefGoogle Scholar
  52. 52.
    Nilakantan R, Bauman N, Haraki KS (1997) Database diversity assessment: new ideas, concepts, and tools. J Comput Aided Mol Des 11(5):447–452PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lee ML, Schneider G (2001) Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 3(3):284–289PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lewell XQ et al (2003) Drug rings database with web interface. A tool for identifying alternative chemical rings in lead discovery programs. J Med Chem 46(15):3257–3274PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kho R et al (2005) Ring systems in mutagenicity databases. J Med Chem 48(21):6671–6678PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lameijer EW et al (2006) Mining a chemical database for fragment co-occurrence: discovery of “chemical cliches”. J Chem Inf Model 46(2):553–562PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ertl P, et al (2006) Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J Med Chem 49(15):4568–4573PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Xie XQ (2010) Exploiting pubchem for virtual screening. Expert Opin Drug Discov 5(12):1205–1220PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Huth JR et al (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127(1):217–224PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gul S, Gribbon P (2010) Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opin Drug Discov 5(7):681–690PubMedCrossRefGoogle Scholar
  61. 61.
    Soares KM et al (2010) Profiling the NIH small molecule repository for compounds that generate H2O2 by redox cycling in reducing environments. Assay Drug Dev Technol 8(2):152–174PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Crowe A et al (2013) Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J Biol Chem 288(16):11024–11037PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Feng BY et al (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50(10):2385–2390PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513(7519):481–483PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Tomasic T, Peterlin Masic L (2012) Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 7(7):549–560PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ge Y et al (2012) Discovery and synthesis of hydronaphthoquinones as novel proteasome inhibitors. J Med Chem 55(5):1978–1998PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19(11):2093–2100PubMedPubMedCentralGoogle Scholar
  69. 69.
    Qin J et al (2012) Identification of a novel family of BRAF(V600E) inhibitors. J Med Chem 55(11):5220–5230PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rai D et al (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155PubMedCrossRefGoogle Scholar
  71. 71.
    Baell JB (2010) Observations on screening-based research and some concerning trends in the literature. Future Med Chem 2(10):1529–1546PubMedCrossRefGoogle Scholar
  72. 72.
    Habig M et al (2009) Efficient elimination of nonstoichiometric enzyme inhibitors from HTS hit lists. J Biomol Screen 14(6):679–689PubMedCrossRefGoogle Scholar
  73. 73.
    Jadhav A et al (2010) Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem 53(1):37–51PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55(22):9763–9772PubMedCrossRefGoogle Scholar
  75. 75.
    Kennedy T (1997) Managing the drug discovery/development interface. Drug Discovery Today 2(10):436–444CrossRefGoogle Scholar
  76. 76.
    Downs GM, Barnard JM (2002) Clustering methods and their uses in computational chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New York, pp 1–40Google Scholar
  77. 77.
    Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discovery 15:817PubMedCrossRefGoogle Scholar
  78. 78.
    Todeschini R, Consonni V (eds) (2009) Molecular descriptors for chemoinformatics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp I–XLIGoogle Scholar
  79. 79.
    Lagorce D et al (2011) The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 27(14):2018–2020PubMedCrossRefGoogle Scholar
  80. 80.
    Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510PubMedCrossRefGoogle Scholar
  81. 81.
    Bostrom J (2001) Reproducing the conformations of protein-bound ligands: a critical evaluation of several popular conformational searching tools. J Comput Aided Mol Des 15(12):1137–1152PubMedCrossRefGoogle Scholar
  82. 82.
    Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48(9):1773–1791PubMedCrossRefGoogle Scholar
  83. 83.
    Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11(9):1189–1202PubMedCrossRefGoogle Scholar
  84. 84.
    Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7(4):938–950PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7(20):1047–1055PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008CrossRefGoogle Scholar
  87. 87.
    Kirchmair J et al (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46(4):1848–1861PubMedCrossRefGoogle Scholar
  88. 88.
    Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47(6):2462–2474PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Liu X et al (2009) Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation. BMC Bioinformatics 10:101PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Blaney JM, Dixon JS (2007) Distance geometry in molecular modeling. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. pp 299–335CrossRefGoogle Scholar
  91. 91.
    Wild, DJ, Blankley CJ (1999) VisualiSAR: a web-based application for clustering, structure browsing, and structure-activity relationship study. J Mol Graph Model 17(2):85–89, 120–125PubMedCrossRefGoogle Scholar
  92. 92.
    Nicholls A et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53(10):3862–3886PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bohm HJ, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1(3):217–224PubMedCrossRefGoogle Scholar
  94. 94.
    Willett P (1987) A review of chemical structure retrieval systems. J Chemom 1(3):139–155CrossRefGoogle Scholar
  95. 95.
    Scott DE et al (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51(25):4990–5003PubMedCrossRefGoogle Scholar
  96. 96.
    Lewell XQ et al (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38(3):511–522PubMedCrossRefGoogle Scholar
  97. 97.
    Varin T et al (2010) Compound set enrichment: a novel approach to analysis of primary HTS data. J Chem Inf Model 50(12):2067–2078PubMedCrossRefGoogle Scholar
  98. 98.
    Dandapani S et al (2012) Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr Protoc Chem Biol 4:177–191PubMedPubMedCentralGoogle Scholar
  99. 99.
    Petrova T et al (2012) Structural enrichment of HTS compounds from available commercial libraries. MedChemComm 3(5):571–579CrossRefGoogle Scholar
  100. 100.
    Kaldor SW et al (1997) Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40(24):3979–3985PubMedCrossRefGoogle Scholar
  101. 101.
    Schindler T et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486):1938–1942PubMedCrossRefGoogle Scholar
  102. 102.
    Varghese JN (1999) Development of neuraminidase inhibitors as anti-influenza virus drugs. Drug Dev Res 46(3–4):176–196CrossRefGoogle Scholar
  103. 103.
    Rutenber EE, Stroud RM (1996) Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity. Structure 4(11):1317–1324PubMedCrossRefGoogle Scholar
  104. 104.
    Filikov AV et al (2000) Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des 14(6):593–610PubMedCrossRefGoogle Scholar
  105. 105.
    Lind KE et al (2002) Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9(2):185–193PubMedCrossRefGoogle Scholar
  106. 106.
    Lionta E et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Schwede T et al (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Eswar N, et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: p. Unit-5 6Google Scholar
  109. 109.
    Kelley LA et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4(5):490–496PubMedCrossRefGoogle Scholar
  111. 111.
    Boland A, Chang L, Barford D (2017) The potential of cryo-electron microscopy for structure-based drug design. Essays Biochem 61(5):543–560PubMedCrossRefGoogle Scholar
  112. 112.
    Sugiki, T, et al (2018) Current NMR techniques for structure-based drug discovery. Molecules, 23(1)PubMedCentralCrossRefPubMedGoogle Scholar
  113. 113.
    Vyas VK et al (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shao Z et al (2017) Discovery of novel DNA methyltransferase 3A inhibitors via structure-based virtual screening and biological assays. Bioorg Med Chem Lett 27(2):342–346PubMedCrossRefGoogle Scholar
  115. 115.
    Cura V et al (2017) Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 284(1):77–96PubMedCrossRefGoogle Scholar
  116. 116.
    Siedlecki P et al (2003) Establishment and functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun 306(2):558–563PubMedCrossRefGoogle Scholar
  117. 117.
    Siedlecki P et al (2006) Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 49(2):678–683PubMedCrossRefGoogle Scholar
  118. 118.
    Brueckner B et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311PubMedCrossRefGoogle Scholar
  119. 119.
    Clark DE (2008) What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 3(8):841–851PubMedCrossRefGoogle Scholar
  120. 120.
    Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Wapenaar H, Dekker FJ (2016) Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 8:59PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kannt A, Wieland T (2016) Managing risks in drug discovery: reproducibility of published findings. Naunyn Schmiedebergs Arch Pharmacol 389(4):353–360PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saurabh Loharch
    • 1
  • Vikrant Karmahapatra
    • 1
  • Pawan Gupta
    • 1
  • Rethi Madathil
    • 1
  • Raman Parkesh
    • 1
    Email author
  1. 1.Advanced Protein Science Building, Institute of Microbial TechnologyChandigarhIndia

Personalised recommendations