Solar Radiation

  • Stavros KarathanasisEmail author


Solar energy is virtually inexhaustible and potentially available to be used everywhere. However, Solar Radiation Concentrating Systems exclusively depend on direct solar radiation. As a consequence, to plan and design them effectively, we need proper calculation and computation tools that allow us to estimate the amount of direct solar radiation falling on System’s collectors. For this reason, it would be beneficial to study the nature of solar radiation, as well as the geometrical parameters affecting its amount on the edge of Earth’s atmosphere. In addition, radiation–matter interaction’s processes further modify solar radiation reaching Earth’s surface. These phenomena must be taken into consideration when choosing or developing the most appropriate direct solar radiation model. Moreover, Sun’s position in the sky and collectors’ set-up are another two important factors. All these issues affect the design, the development and the efficiency of Solar Radiation Concentrating Systems and are dealt within this chapter.


  1. Al-Dabbas, Mohammed Awwad Ali. 2012. The analysis of the characteristics of the solar radiation climate of the daily global radiation and diffuse radiation in Amman, Jordan. International Journal of Renewable Energy 5(2) (2010).Google Scholar
  2. Ahmed, Emad A., and M. El-Nouby Adam. 2013. Estimate of Global Solar Radiation by Using Artificial Neural Network in Qena, Upper Egypt. Journal of Clean Energy Technologies 1(2) (2013).Google Scholar
  3. Babatunde, Elisha B. 2012. Solar Radiation. Publisher InTech, ISBN 978-953-51-0384-4, p 484.Google Scholar
  4. Basunia, M.A., H. Yoshiob, and T. Abec. 2012. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces. TJER 9 (2): 27–35.Google Scholar
  5. Becker, Stefan. 2001. Calculation of Direct Solar and Diffuse Radiation in Israel. International Journal of Climatology 21: 1561–1576.CrossRefGoogle Scholar
  6. Benkaciali, S., and K. Gairaa. 2012. Comparative study of two models to estimate solar radiation on an inclined surface. Revue des Energies Renouvelables 15 (2): 219–228.Google Scholar
  7. Bird, R.E., and R.L. Hulstrom. 1981. Review, evaluation, and improvement of direct irradiance models. Transactions of the ASME, Journal of Solar Energy Engineering 103: 182–192.CrossRefGoogle Scholar
  8. Bouzid, Zakaria, Nassera Ghellai, and Miloud Benmedjahed. 2015. Estimation of Solar Radiation, Management of Energy Flow and Development of a New Approach for the Optimization of the Sizing of Photovoltaic System. Application to Algeria, International Journal of Renewable Energy Research 5 (1): 317–324.Google Scholar
  9. Duffie, J.A., and W.A. Beckman. 1994. Solar Engineering of thermal Processes, 2nd ed, 910. New York: Wiley.Google Scholar
  10. Duffie, John A., and William A. Beckman. 2013. Solar Engineering of Thermal Processes. NewYork: Wiley (ISBN 978-0-470-87366-3).CrossRefGoogle Scholar
  11. Edeoja, Alex Okibe, and C. Andrew Eloka-Eboka. 2013. Experimental Validation of Hottel’s Transmittance Model for Estimating Beam Radiation in Makurdi Location. American Journal of Engineering Research (AJER) 02(08): 51–57 (e-ISSN: 2320-0847 and p-ISSN : 2320-0936).Google Scholar
  12. Goosse, H., P.Y. Barriat, W. Lefebvre, M.F. Loutre and V. Zunz. 2008-2010. Introduction to climate dynamics and climate modeling, Online textbook available at (The Energy balance, hydrological and carbon cycles, Chap 2).
  13. Gueymard, Christian A. 2003. Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed Theoretical Performance Assessment, Solar Energy 74: 355–379.Google Scholar
  14. Ineichen, Pierre. 2008. A broadband simplified version of the Solis clear sky model. Solar Energy 82: 758–762.CrossRefGoogle Scholar
  15. Inman, Rich H., Hugo T.C. Pedro, and Carlos F.M. Coimbra. 2013. Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science 39: 535–576.CrossRefGoogle Scholar
  16. Iqbal, Muhammad. 1983. An Introduction to Solar Radiation, 408. London: Academic Press (ISBN: 978-0-12-373750-2) Available online at Scholar
  17. Jäger, Klaus, Olindo Isabella, Arno H.M. Smets, René A.C.M.M. van Swaaij, and Miro Zeman. 2014. Solar Energy, Fundamentals, Technology, and Systems. Delft University of Technology, Available online at
  18. Julian, Chen C. 2011. Physics of Solar Energy, 373. New York: Wiley (ISBN 978-0-470-64780-6).Google Scholar
  19. Karavana-Papadimou, K., B.E. Psiloglou, S. Lykoudis, and H.D. Kambezidis. 2013. Model For Estimating Atmospheric Ozone Content Over Europe for Use in Solar Radiation Algorithms. Global NEST Journal 15 (2): 152–162.CrossRefGoogle Scholar
  20. Kasten, F., and A.T. Young. 1989. Revised optical air mass tables and approximation formula. Applied Optics 28 (22): 4735–4738.CrossRefGoogle Scholar
  21. Kasten, F. 1996. The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Solar Energy 56: 239–244.CrossRefGoogle Scholar
  22. Maroof, Khan M., and M. Jamil Ahmad. 2012. Estimation of global solar radiation using clear sky radiation in Yemen. Journal of Engineering Science and Technology Review 5 (2): 12–19.CrossRefGoogle Scholar
  23. Mousavi, Maleki Seyed Abbas, H. Hizam, and Chandima Gomes. 2017. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies 2017 (10): 134.CrossRefGoogle Scholar
  24. Meinel, A.B., and M.P. Meinel. 1976. Applied Solar Energy: An Introduction. Reading, MA: Addison Wesley Publishing.Google Scholar
  25. Mohanty, P., T. Muneer, and Kohle M. (eds.) 2015. Solar Photovoltaic System Applications, 184. New York: Springer International Publishing (IX ISBN 978-3-319-14662-1).Google Scholar
  26. Myers, Daryl R. 2013. Solar Radiation, Practical Modeling for Renewable Energy Applications, 199. London: Taylor & Francis Group, LLC, CRC Press (ISBN-13: 978-1-4665-0327-4, eBook–PDF).Google Scholar
  27. Paulescu, M., E. Paulescu, P. Gravila, and V. Badescu. 2013. Weather Modeling and Forecasting of PV Systems Operation, XVIII, 358. Berlin: Springer (ISBN 978-1-4471-4648-3).CrossRefGoogle Scholar
  28. Radosavljević, Jasmina, and Amelija Đorđević. 2001. Defining of the Intensity of Solar Radiation on Horizontal and Oblique Surfaces on Earth. Working and Living Environmental Protection 2 (1): 77–86.Google Scholar
  29. Reno, Matthew J., Clifford W. Hansen, and Joshua S. Stein. 2012. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis, SANDIA REPORT, Sandia National Laboratories, New Mexico, California, SAND2012-2389, Unlimited Release, Printed March 2012. Available online at
  30. Rigollier, Christelle, Olivier Bauer, and Lucien Wald. 2000. On the clear sky model of the ESRA - European Solar Radiation Atlas with respect to the Heliosat method. Solar Energy 68 (1): 33–48. (Elsevier).CrossRefGoogle Scholar
  31. Sportisse, B. 2010, Fundamentals in Air Pollution, From Processes to Modelling, 299. Berlin: Springer (ISBN 978-90-481-2969-0).CrossRefGoogle Scholar
  32. Sung, Taehong, Sang Youl Yoon, and Kyung Chun Kim. 2015. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle. Energies 8: 7058–7069.CrossRefGoogle Scholar
  33. Wong, L.T., and W.K. Chow. 2001. Solar radiation model. Applied Energy 69: 191–224.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environment and Spatial Planning of Central MacedoniaDecentralized Administration of Macedonia and ThraceThessalonikiGreece

Personalised recommendations