Advertisement

Rapid Model Predictive Controller for Artificial Pancreas

  • M. El HachimiEmail author
  • A. Ballouk
  • A. Baghdad
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Artificial Pancreas (AP) will help large diabetic patients to manage their disease. This paper presents a new Control Algorithm used in AP. This algorithm is based on a model predictive control and characterized by an acceleration of control law without producing overshoot. The method consists on the introduction of two penalization function in the cost function according to the system dynamic. Simulations under a realistic scenario in approved platform of simulation demonstrate the success of this method to obtain satisfactory control performances.

Keywords

Artificial pancreas Control algorithm Overshoot Model predictive control Cost function System dynamic 

Abbreviations

AP

artificial pancreas

MPC

model predictive control

T1DM

Type 1 diabetes mellitus

BG

blood glucose

z-MPC

zone-MPC

e-MPC

enhanced-MPC

CHO

carbohydrates

CGM

continuous glucose monitor

CSII

continuous subcutaneous insulin injection

FDA

Food and Drug Administration

TDI

total daily insulin

mg/dL

milligrams per deciliter N

pmol/min

picomoles per minute

UVA/Padova

Universities of Virginia/Padova

Notes

Acknowledgements

This work returns the framework of the research project SISA1 “Mini intelligent Power plant” began between research center SISA and our University. We are anxious to think the Hassan II University of Casablanca for the financing of this project.

References

  1. Del Favero, S., Place, J., Kropff, J., Messori, M., Keith-Hynes, P., Visentin, R., et al. (2015). Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes. Diabetes, Obesity & Metabolism, 17, 468–476.CrossRefGoogle Scholar
  2. Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care, 37, 1191–1197.  https://doi.org/10.2337/dc13-2108.CrossRefGoogle Scholar
  3. Finan, D. A., Jørgensen, J. B., Poulsen, N. K., Madsen, H. (2010). Robust model identification applied to type 1 diabetes. In Proceedings of the American Control Conference, Baltimore, MD, USA, pp. 2021–2026.Google Scholar
  4. Gondhalekar, R., Dassau, E., Doyle, III F (2015). Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM. American Control Conference Palmer House Hilton. Chicago, IL, USA, July 1–3.Google Scholar
  5. Grosman, B., Dassau, E., Zisser, H. C., Jovanovic, L., & Doyle, F. J., III. (2010). Zone model predictive control: A strategy to minimize hyper- and hypoglycemic events. Journal of Diabetes Science and Technology, 4, 961–975.CrossRefGoogle Scholar
  6. Huyett, L. M., Dassau, E., Zisser, C., & Doyle, F. J. (2015). Design and evaluation of a robust PID controller for a fully implantable artificial pancreas. Industrial & Engineering Chemistry Research, 54(42), 10311–10321.CrossRefGoogle Scholar
  7. Jacobs, G., El Youssef, J., Castle, J., Bakhtiani, P., Branigan, D., Breen, M., Bauer, D., Preiser, N., Leonard, G., Stonex, T., Ward, W.K. (2014). Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies. IEEE Transactions on Biomedical Engineering Volume: 61, Issue: 10.CrossRefGoogle Scholar
  8. Jacobs, P. G., Resalat, N., & El Youssef, J. (2015). Incorporating an exercise detection, grading, and hormone dosing algorithm into the artificial pancreas using accelerometry and heart rate. J Diabetes Sci Technol, 9(6), 1175–1184.CrossRefGoogle Scholar
  9. Kovatchev, B. P., Cobelli, C., & Renard, E. (2010). Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. Journal of Diabetes Science and Technology, 4, 1374–1381.CrossRefGoogle Scholar
  10. Lee, J., Gondhalekar, R., Dassau, E., & Doyle, F. J., III. (2016). Shaping the MPC cost function for superior automated glucose control. Industrial & Engineering Chemistry Research, 49(7), 779–784.Google Scholar
  11. Ly, T. T., Keenan, D. B., Roy, A., Han, J., Grosman, B., Cantwell, M., … & Buckingham, B. A. (2016). Automated overnight closed-loop control using a proportional-integral-derivative algorithm with insulin feedback in children and adolescents with type 1 diabetes at diabetes camp. Diabetes Technology & Therapeutics, 18(6), 377–384.CrossRefGoogle Scholar
  12. Pinsker, J. E., LeeJ, B., Dassau, E., Seborg, D. E., Bradley, P. K., Gondhalekar, R., et al. (2016). Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. Diabetes Care, 39, 1135–1142.CrossRefGoogle Scholar
  13. Resalat, N., El Youssef, J., Reddy, R., & Jacobs, P. G. (2016) Design of a dual-hormone model predictive control for artificial pancreas with exercise model. In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Electronics Energy, Automatic & Data Processing (LEEA&TI) FST, Mohammedia University Hassan II of CasablancaMohammediaMorocco

Personalised recommendations