Recent Advances in Electrical and Information Technologies for Sustainable Development pp 21-28 | Cite as
Flatness-Based Control of DC Machine-Serial Multicellular Power Converter Association
Abstract
This chapter considers the control of serial multicellular power converter feeding DC motor. For this purpose, a new control strategy based on flatness approach is developed. The main aim consists on regulating the DC motor velocity to a desired level, keeping in mind the necessity of ensuring an equitable distribution of the supply voltage on the power switches of serial multicellular power converter. To this end, the regulation of the voltage at the terminals of the flying capacitors is necessary. The synthetized controller was verified by computer simulation using Matlab/SimPowerSystems, and the obtained results prove the effectiveness of the designed controller and show that the entire objectives are achieved.
Keywords
DC motor Multicellular power converter Speed regulation Flying capacitor Nonlinear control Flatness approach Routh–Hurwitz criteriaReferences
- Aouadi, C., Abouloifa, A., Aourir, M., Boussairi, Y., Hamdoun, A., & Lachkar, I. (2017). State-feedback nonlinear control of three-phase grid connected to the photovoltaic system. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE.Google Scholar
- Aouadi, C., Abouloifa, A., Hamdoun, A., & Boussairi, Y. (2014). Backstepping based control of PV system connected to the grid. International Journal of Computer & Information Technology, 3.Google Scholar
- Benmansour, K., Benalia, A., Djemaï, M., & de Leon, J. (2007). Hybrid control of a multicellular converter. Nonlinear Analysis: Hybrid Systems, 1, 16–29. https://doi.org/10.1016/j.nahs.2006.06.001.MathSciNetCrossRefzbMATHGoogle Scholar
- Benmiloud, M., & Benalia, A. (2013). Hybrid control scheme for multicellular converter. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 476–482). IEEE.Google Scholar
- Benmiloud, M., Benalia, A., Defoort, M., & Djemai, M. (2016). On the limit cycle stabilization of a DC/DC three-cell converter. Control Engineering Practice, 49, 29–41. https://doi.org/10.1016/j.conengprac.2016.01.010.CrossRefGoogle Scholar
- Bethoux, O., & Barbot, J.-P. (2006). Commande permettant le contrôle du convertisseur multicellulaire série à nombre non premier de cellules. In Conférence Internationale Francophone En Automatique.Google Scholar
- Cormerais, H., Buisson, J., Richard, P. Y., & Morvan, C. (2008). Modelling and passivity based control of switched systems from bond graph formalism: Application to multicellular converters. Journal of the Franklin Institute, 345, 468–488. https://doi.org/10.1016/j.jfranklin.2008.01.001.MathSciNetCrossRefzbMATHGoogle Scholar
- Djemaï, M., Busawon, K., Benmansour, K., & Marouf, A. (2011). High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter. International Journal of Systems Science, 42, 1869–1882. https://doi.org/10.1080/00207721.2010.545492.MathSciNetCrossRefzbMATHGoogle Scholar
- Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control, 61, 1327–1361.MathSciNetCrossRefGoogle Scholar
- Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters: Active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial Electronics, 49, 998–1008. https://doi.org/10.1109/TIE.2002.803200.CrossRefGoogle Scholar
- Li, C. (n.d.). A modified neutral-point balancing space vector modulation for three-level neutral point clamped converters in high speed drives. IEEE Transactions on Industrial Electronics, 13.Google Scholar
- Meynard, T. A., Foch, H., Thomas, P., Courault, J., Jakob, R., & Nahrstaedt, M. (2002). Multicell converters: Basic concepts and industry applications. IEEE Transactions on Industrial Electronics, 49, 955–964. https://doi.org/10.1109/TIE.2002.803174.CrossRefGoogle Scholar
- Patin, N. (2015). Introduction to multi-level converters. In Power electronics applied to industrial systems and transports (Vol. 2, pp. 193–213). Elsevier. https://doi.org/10.1016/B978-1-78548-001-0.50005-8.CrossRefGoogle Scholar