Proposal of an Open Hardware-Software System for the Recognition of Emotions from Physiological Variables

  • Mauricio Sánchez BarragánEmail author
  • Luis Alejandro Solarte MoncayoEmail author
  • Gabriel Elias Chanchí GolondrinoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 847)


In this article, we present the design and construction of an open hardware-software system responsible for the characterization of the user context, through physiological signals such as: heart rate variability (HRV), galvanic skin response (GSR) and electromyographic signals (EMG), which allows to establish significant levels of mental stress (SI), arousal and valence, metrics important that make possible the inference of emotional states in the person. In addition, we describe the development of computational method for the inference of emotions and the mathematical calculations that involve this process. Finally, the hardware software system validation is presented through a video on demand service based on emotions, which includes a recommendation system that suggests a set of contents based on the user’s emotional behavior during the interaction with the service. This system aims to serve as a reference for the construction of other services based on the study of the user’s emotional behavior in different application contexts.


Arousal Emotions Physiological signals and valence 


  1. 1.
    Gartner, Inc.: Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent From 2015 (Gartner) (10 de Noviembre de 2015). Recuperado el 10 de Junio de 2016
  2. 2.
    Cisco IBSG. The Internet of Things How the Next Evolution of the Internet Is Changing Everything. Cisco (2011)Google Scholar
  3. 3.
    Buyya, R., Dastjerdi, A.V.: Internet of Things: Principles and Paradigms. Elsevier, Amsterdam (2016)Google Scholar
  4. 4.
    Cha, H., Lee, W., Jeon, J.: Standardization strategy for the internet of wearable things. In: 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju (2015)Google Scholar
  5. 5.
    Kannan, R., Rasool, R.U., Jin, H., Balasundaram, S.: Managing and Processing Big Data in Cloud Computing. IGI Global, Hershey (2016)CrossRefGoogle Scholar
  6. 6.
    Rose, K., Eldridge, S., Chapin, L.: The Internet of Things (IoT): An Overview. The. Internet Society, Reston (2015)Google Scholar
  7. 7.
    Pilioura, T., Tsalgatidou, A.: E-services: current technology and open issues. In: Casati, F., Shan, M.-C., Georgakopoulos, D. (eds.) TES 2001. LNCS, vol. 2193, pp. 1–15. Springer, Heidelberg (2001). Scholar
  8. 8.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, New York, USA (2008).
  9. 9.
    Moreno, M.N., et al.: Web mining based framework for solving usual problems in recommender systems. A case study for movies’ recommendation. Neurocomputing (2015).
  10. 10.
    González, G., López, B., De la Rosa, J.L.: Managing Emotions in Smart User Models for Recommender Systems. Institut d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain (2004)Google Scholar
  11. 11.
    Sharma, T., Kapoor, B.: Intelligent data analysis algorithms on biofeedback signals for estimating emotions. In: International Conference on Reliability, Optimization and Information Technology, Baddi, India (2014)Google Scholar
  12. 12.
    Patil, K., Singh, M., Singh, G., Anjali, S.N.: Mental stress evaluation using heart rate variability analysis: a review. Int. J. Public Ment. Health Neurosci. 2 (2015). ISSN: 2394-4668 Google Scholar
  13. 13.
    Choi, J., Gutierrez-Osuna, R.: Using heart rate monitors to detect mental stress. In: Wearable and Implantable Body Sensor Networks, Berkeley, CA (2009)Google Scholar
  14. 14.
    Mohana, S.R., Aradhya, H.R.: Remote monitoring of heart rate and music to tune the heart rate. In: Communication Technologies (GCCT), Thuckalay (2015)Google Scholar
  15. 15.
    Salah, A.A., Gevers, T.: Computer Analysis of Human Behavior. Springer, London (2011). Scholar
  16. 16.
    Honeycutt, A., Milliken, M.E.: Understanding Human Behavior: A Guide for Health Care Providers. Delmar Cengage Learning, Clifton Park (2012)Google Scholar
  17. 17.
    Salah, A.A., Kröse, B.J., Cook, D.J.: Human behavior understanding. In: 6th International Workshop, HBU 2015, Osaka, Japan, 8 September 2015, Proceedings, Osaka (2015)Google Scholar
  18. 18.
    Hall, J.E.: Tratado de fisiología médica. Elsevier, Barcelona (2011)Google Scholar
  19. 19.
    Heilman, K.M.: The neurobiology of emotional experience. J. Neuropsychiatr. 439–448 (1997)Google Scholar
  20. 20.
    Kleinginna, P., Kleinginna, A.: A categorized list of emotion definitions, with suggestions for a consensual definition. In: Motivation and Emotion, pp. 345–379. Plenum Publishing Corporation, Georgia (1981)Google Scholar
  21. 21.
    Jones, M., Fay, R., Popper, A.N.: Music Perception. Springer, Ohio (2010). Scholar
  22. 22.
    Meyers, O.: A Mood-Based Music Classification and Exploration System. Massachusetts Institute of Technology, Massachusetts (2004)Google Scholar
  23. 23.
    Posner, J., Russell, J.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17(3), 715–734 (2005)CrossRefGoogle Scholar
  24. 24.
    Yang, Y., Chen, H.: Music Emotion Recognition. CRC Press, Taiwan (2011)CrossRefGoogle Scholar
  25. 25.
    Bayevsky, R.M., Ivanov, G.G., Chireykin, L.V., et al.: HRV analysis under the usage of different electrocardiography systems (methodical recommendations). Committee of New Medical Techniques of Ministry of Health of Russia, Moscow (2002)Google Scholar
  26. 26.
    Kappeler-Setz, C.: Multimodal Emotion and Stress Recognition. ETH ZURICH, Zurich (2012)Google Scholar
  27. 27.
    Dimberg, U.: Facial electromyography and emotional reactions. In: Psychophysiology, pp. 481–494. The Society for Psychophysiological Research, Inc., Upsala (1990)Google Scholar
  28. 28.
    Van Boxtel, A.: Facial EMG as a tool for inferring affective states. In: Spink, A., Grieco, F., Krips, O., Loijens, L., Noldus, L. (eds.) Proceedings of Measuring Behavior, Tilburing, pp. 104–108 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University Institution Colegio Mayor del CaucaPopayánColombia

Personalised recommendations