Advertisement

Healing Agents Used for Mechanical Recovery in Nanotextured Systems

  • Alexander L. YarinEmail author
  • Min Wook Lee
  • Seongpil An
  • Sam S. Yoon
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 105)

Abstract

Several main healing agents currently used in self-healing nanotextured materials are discussed in this section. These include dicyclopentadiene (DCPD) and Grubbs’ catalyst (Sect. 2.1) and dimethyl siloxane (DMS, a resin monomer) and dimethyl-methyl hydrogen-siloxane (curing agent) polymerized as poly(dimethyl siloxane) (PDMS, Sect. 2.2). Several other elastomers used for self-healing are discussed in Sect. 2.3. Self-healing agents can also comprise epoxy-hardener systems (Sect. 2.4), and gels (Sect. 2.5).

References

  1. Abdul Khalil HPS, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226CrossRefGoogle Scholar
  2. An S, Liou M, Song KY, Jo HS, Lee MW, Al-Deyab SS, Yarin AL, Yoon SS (2015) Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale 7:17778–17785CrossRefGoogle Scholar
  3. Bai J, Li H, Shi Z, Yin J (2018) An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiolene and Diels-Alder click chemistry. Macromolecules 48:3539–3549CrossRefGoogle Scholar
  4. Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR (2009) Microcapsules filled with reactive solutions for self-healing materials. Polymer 50:990–997CrossRefGoogle Scholar
  5. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710CrossRefGoogle Scholar
  6. Campbell DJ, Beckman KJ, Calderon CE, Doolan PW, Ottosen RM, Ellis AB, Lisensky GC (1999) Replication and compression of bulk and surface structures with polydimethylsiloxane elastomer. J Chem Educ 75:537–541Google Scholar
  7. Chen C, Peters K, Li Y (2013) Self-healing sandwich structures incorporating an interfacial layer with vascular network. Smart Mater Struct 22:025031CrossRefGoogle Scholar
  8. Chen L, Chen H, Yao X, Ma X, Tian H (2015a) A hybrid supramolecular polymeric hydrogel with rapid self-healing property. Chem Asian J 10:2352–2355CrossRefGoogle Scholar
  9. Chen S, Mo F, Yang Y, Stadler FJ, Chen S, Yang H, Ge Z, Zhuo H (2015b) Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J Mater Chem A 3:2924–2933CrossRefGoogle Scholar
  10. Chen Y, Guan Z (2015) Self-healing thermoplastic elastomer brush copolymers having a glassy polymethylmethacrylate backbone and rubbery polyacrylate-amide brushes. Polymer 69:249–254CrossRefGoogle Scholar
  11. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000CrossRefGoogle Scholar
  12. Das A, Sallat A, Bohme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630CrossRefGoogle Scholar
  13. Denq BL, Hu YS, Chen LW, Chiu WY, Wu TR (1999) The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propyl ester phosphazene. J Appl Polym Sci 74:229–237CrossRefGoogle Scholar
  14. Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng HB (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322–2333CrossRefGoogle Scholar
  15. Fan F, Szpunar J (2015) The self-healing mechanism of an industrial acrylic elastomer. J Appl Polym Sci 132:42135Google Scholar
  16. Farquharson S, Smith W, Rose J, Shaw M (2002) Correlations between molecular (Raman) and macroscopic (rheology) data for process monitoring of thermoset composite. J Process Anal Chem 7:45–53Google Scholar
  17. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34CrossRefGoogle Scholar
  18. Garcia FG, Soares BG, Pita VJRR, Sanchez R, Rieumont J (2007) Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J Appl Polym Sci 106:2047–2055CrossRefGoogle Scholar
  19. Gold BJ, Hovelmann CH, Weiss C, Radulescu A, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D (2016) Sacrificial bonds enhance toughness of dual polybutadiene networks. Polymer 87:123–128CrossRefGoogle Scholar
  20. Goosey MT (1985) Epoxide resins and their formulation. In: Goosey MT (ed) Plastics for electronics. Springer, Netherlands, Dordrecht, pp 99–136CrossRefGoogle Scholar
  21. Harmon JP, Bass R (2014) Self-healing polycarbonate containing polyurethane nanotube composite. University of South Florida; US Patent 8,846,801 B1, Sep. 30Google Scholar
  22. Huang M, Yang J (2011) Facile microencapsulation of HDI for self-healing anticorrosion coatings. J Mater Chem 21:11123CrossRefGoogle Scholar
  23. Jasra R, Maiti M, Srivastava V. (2015) Reliance Industries Limited, US Patent 20150045496, Feb. 12Google Scholar
  24. Jolley ST, Williams MK, Gibson TL, Smith TM, Caraccio AJ, Li W (2012) Self-healing polymer materials for wire insulation, polyimides, flat surfaces, and inflatable structures. National Aeronautics and Space Administration (NASA); Dec. 20Google Scholar
  25. Jones AR, Watkins CA, White SR, Sottos NR (2015) Self-healing thermoplastic-toughened epoxy. Polymer 74:254–261CrossRefGoogle Scholar
  26. Keller MW, Hampton K, McLaury B (2013) Self-healing of erosion damage in a polymer coating. Wear 307:218–225CrossRefGoogle Scholar
  27. Keller MW, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Mater 17:2399–2404Google Scholar
  28. Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015a) Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces 7:19546–19554CrossRefGoogle Scholar
  29. Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015b) Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Appl Mater Interfaces 7:19555–19561CrossRefGoogle Scholar
  30. Lee MW, An S, Kim YI, Yoon SS, Yarin AL (2018) Self-healing three-dimensional bulk materials based on core-shell nanofibers. Chem Eng J 334:1093–1100CrossRefGoogle Scholar
  31. Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014a) Self-healing transparent core–shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2:7045–7053CrossRefGoogle Scholar
  32. Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014b) Hybrid self-healing matrix using core−shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6:10461–10468CrossRefGoogle Scholar
  33. Lee MW, Jo HS, Yoon SS, Yarin AL (2017a) Thermally driven self-healing using copper nanofiber heater. Appl Phys Lett 111:011902CrossRefGoogle Scholar
  34. Lee MW, Sett S, An S, Yoon SS, Yarin AL (2017b) Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Appl Mater Interfaces 9:27223–27231CrossRefGoogle Scholar
  35. Lee MW, Sett S, Yoon SS, Yarin AL (2016a) Fatigue of self-healing nanofiber-based composites: static test and subcritical crack propagation. ACS Appl Mater Interfaces 8:18462–18470CrossRefGoogle Scholar
  36. Lee MW, Sett S, Yoon SS, Yarin AL (2016b) Self-healing of nanofiber-based composites in the course of stretching. Polymer 103:180–188CrossRefGoogle Scholar
  37. Lee MW, Yoon SS, Yarin AL (2016c) Solution-blown core−shell self-healing nano- and microfibers. ACS Appl Mater Interfaces 8:4955–4962CrossRefGoogle Scholar
  38. Lenhardt JM, Kim SH, Nelson AJ, Singhal P, Baumann TF, Satcher JH (2013) Increasing the oxidative stability of poly(dicyclopentadiene) aerogels by hydrogenation. Polymer 54:542–547CrossRefGoogle Scholar
  39. Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928CrossRefGoogle Scholar
  40. Lutz A, van der Berg O, Damme JV, Verheyen K, Bauters E, Graeve ID, Du Prez FE, Terryn H (2015) A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl Mater Interfaces 7:175–183CrossRefGoogle Scholar
  41. Mauldin TC, Rule JD, Sottos NR, White SR, Moore JS (2007) Self-healing kinetics and the stereoisomers of dicyclopentadiene. J R Soc Interface 4:389–393CrossRefGoogle Scholar
  42. Neisiany RE, Khorasani SN, Lee JKY, Ramakrishna S (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6:70056–70063CrossRefGoogle Scholar
  43. Ou R, Eberts K, Skandan G (2015) Phase separated self-healing polymer coatings. NEI Corporation, US Patent 8,987,352 B1, Mar. 24Google Scholar
  44. Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22:496–499CrossRefGoogle Scholar
  45. Patrick JF, Hart KR, Krull BP, Diesendruck CE, Moore JS, White SR, Sottos NR (2014) Continuous self-healing life cycle in vascularized structural composites. Adv Mater 26:4302–4308CrossRefGoogle Scholar
  46. Perring M, Long TR, Bowden NB (2010) Epoxidation of the surface of polydicyclopentadiene for the self-assembly of organic monolayers. J Mater Chem 20:8679–8685CrossRefGoogle Scholar
  47. Rahman MA, Sartore L, Bignotti F, Landro LD (2013) Autonomic self-healing in epoxidized natural rubber. ACS Appl Mater Interfaces 5:1494–1502CrossRefGoogle Scholar
  48. Raquez JM, Deleglisea M, Lacrampea MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509CrossRefGoogle Scholar
  49. Saeed MU, Li BB, Chen ZF, Cui S (2016) Self-healing of low-velocity impact and mode-I delamination damage in polymer composites via microchannels. Express Polymer Letters 10:337–348CrossRefGoogle Scholar
  50. Shahabudin N, Yahy R, Gan SN (2016) Microcapsules of poly(urea-formaldehyde) (PUF) containing alkyd from palm oil. Mater Today Proc 3:S88–S95CrossRefGoogle Scholar
  51. Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22:9138–9146CrossRefGoogle Scholar
  52. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117CrossRefGoogle Scholar
  53. Turkenburg DH, Hv B, Funke B, Schmider M, Janke D, Fischer HR (2015) Polyurethane adhesives containing Diels–Alder-based thermoreversible bonds. J Appl Polym Sci 132:41944Google Scholar
  54. Urban MW, Ghosh B (2015) Self-repairing cyclic oxide-substituted chitosan polyurethane networks. University of Southern Mississippi. US Patent 9,200,089Google Scholar
  55. Vahedi V, Pasbakhsh P, Piao CS, Seng CE (2015) A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 3:16005–16012CrossRefGoogle Scholar
  56. van der Zwaag S (ed) (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, HeidelbergGoogle Scholar
  57. Wang W, Xu L, Li X, Yang Y, An E (2014) Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces. Corros Sci 80:528–535CrossRefGoogle Scholar
  58. White SR, Moore JS, Sottos NR, Krull BP, Cruz WAS, Gergely RCR (2014) Restoration of large damage volumes in polymers. Science 344:620–623Google Scholar
  59. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRefGoogle Scholar
  60. Willocq B, Bose RK, Khelifa F, Garcia SJ, Dubois P, Raquez JM (2016) Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites. J Mater Chem A 4:4089–4097CrossRefGoogle Scholar
  61. Wu X-F, Rahman A, Zhou Z, Pelot DD, Sinha-Ray S, Chen B, Payne S, Yarin AL (2013) Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J Appl Polym Sci 129:1383–1393CrossRefGoogle Scholar
  62. Wypych G (2017) Self-healing materials: principles and technology. ChemTec Publishing, TorontoGoogle Scholar
  63. Xiao Y, Huang H, Peng X (2017) Synthesis of self-healing waterborne polyurethanes containing sulphonate groups. RSC Adv 7:20093CrossRefGoogle Scholar
  64. Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromol Rapid Commun 41:9650–9655Google Scholar
  65. Yerro O, Radojevic V, Radovic I, Petrovic M, Uskokovic PS, Stojanovic DB, Aleksic R (2016) Thermoplastic acrylic resin with self-healing properties. Polym Eng Sci 56:251–257CrossRefGoogle Scholar
  66. Zhang H, Wang P, Yang J (2014a) Self-healing epoxy via epoxy–amine chemistry in dual hollow glass bubbles. Compos Sci Technol 94:23–29CrossRefGoogle Scholar
  67. Zhang H, Yang J (2014) Development of self-healing polymers via amine–epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system. Smart Mater Struct 23:065003CrossRefGoogle Scholar
  68. Zhang P, Li G (2015) Healing-on-demand composites based on polymer artificial muscle. Polymer 64:29–38CrossRefGoogle Scholar
  69. Zhang X-C, Ji H-W, Qiao Z-X (2014b) Residual stress in self-healing microcapsule-loaded epoxy. Mater Lett 137:9–12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander L. Yarin
    • 1
    Email author
  • Min Wook Lee
    • 2
  • Seongpil An
    • 3
  • Sam S. Yoon
    • 4
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Institute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeollabuk-doKorea (Republic of)
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  4. 4.School of Mechanical EngineeringKorea UniversitySeoulKorea (Republic of)

Personalised recommendations