Advertisement

Naming Game pp 95-113 | Cite as

Naming Game on Multi-Community Networks

  • Guanrong Chen
  • Yang Lou
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 34)

Abstract

Complex networks are commonly employed as the underlying communication structures in naming game studies, especially random-graph (RG), small-world (SW), and scale-free (SF) networks [1, 2, 3, 4, 5]. As can be seen from the previous chapters, different network topologies affect the naming game process significantly in different ways. Naming game simulations and analysis offer an effective computer-aided approach to building sensible mathematical models and, more importantly, better understanding of the evolution and development of human languages and social behaviors. The convergence phenomena in naming game models are typically verified via numerical simulations [6, 7, 8], theoretical proofs [9], and sometimes social experiments [10].

References

  1. 1.
    A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, The role of topology on the dynamics of the naming game. Eur. Phys. J. Spec. Top. 143(1), 233–235 (2007).  https://doi.org/10.1140/epjst/e2007-00092-0CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Baronchelli, V. Loreto, L. Steels, In-depth analysis of the naming game dynamics: the homogeneous mixing case. Int. J. Mod. Phys. C 19, 785–812 (2008).  https://doi.org/10.1142/S0129183108012522CrossRefzbMATHGoogle Scholar
  3. 3.
    L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Nonequilibrium dynamics of language games on complex networks. Phys. Rev. E 74(3), 036105 (2006).  https://doi.org/10.1103/PhysRevE.74.036105CrossRefGoogle Scholar
  4. 4.
    L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Agreement dynamics on small-world networks. EPL (Europhys. Lett.) 73(6), 969 (2006).  https://doi.org/10.1209/epl/i2005-10481-7MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R.R. Liu, C.X. Jia, H.X. Yang, B.H. Wang, Naming game on small-world networks with geographical effects. Phys. A 388, 3615–3620 (2009).  https://doi.org/10.1016/j.physa.2009.05.007CrossRefGoogle Scholar
  6. 6.
    A. Baronchelli, M. Felici, V. Loreto, E. Caglioti, L. Steels, Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. Theory Exp. 6, P06014 (2006).  https://doi.org/10.1088/1742-5468/2006/06/P06014CrossRefzbMATHGoogle Scholar
  7. 7.
    Q. Lu, G. Korniss, B.K. Szymanski, The naming game in social networks: community formation and consensus engineering. J. Econ. Interact. Coord. 4(2), 221–235 (2009).  https://doi.org/10.1007/s11403-009-0057-7CrossRefGoogle Scholar
  8. 8.
    W.X. Wang, B.Y. Lin, C.L. Tang, G.R. Chen, Agreement dynamics of finite-memory language games on networks. Eur. Phys. J. B 60(4), 529–536 (2007).  https://doi.org/10.1140/epjb/e2008-00013-5CrossRefzbMATHGoogle Scholar
  9. 9.
    B.D. Vylder, K. Tuylsl, How to reach linguistic consensus: a proof of convergence for the naming game. J. Theor. Biol. 242(4), 818–831 (2006).  https://doi.org/10.1016/j.jtbi.2006.05.024MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Centola, A. Baronchelli, The spontaneous emergence of conventions: an experimental study of cultural evolution. Proc. Natl. Acad. Sci. USA 112(7), 1989–1994 (2015).  https://doi.org/10.1073/pnas.1418838112CrossRefGoogle Scholar
  11. 11.
    A. Baronchelli, Role of feedback and broadcasting in the naming game. Phys. Rev. E 83, 046103 (2011).  https://doi.org/10.1103/PhysRevE.83.046103CrossRefGoogle Scholar
  12. 12.
    D.J. Barr, Establishing conventional communication systems: Is common knowledge necessary? Cogn. Sci. 28(6), 937–962 (2004).  https://doi.org/10.1016/j.cogsci.2004.07.002CrossRefGoogle Scholar
  13. 13.
    G.R. Chen, Z.P. Fan, X. Li, Modelling the complex internet topology, Complex Dynamics in Communication Networks (Springer, Berlin, 2005), pp. 213–234.  https://doi.org/10.1007/10973509_9CrossRefGoogle Scholar
  14. 14.
    Z.P. Fan, G.R. Chen, Y.N. Zhang, A comprehensive multi-local-world model for complex networks. Phys. Lett. A 373(18), 1601–1605 (2009).  https://doi.org/10.1016/j.physleta.2009.02.072CrossRefzbMATHGoogle Scholar
  15. 15.
    G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, Power laws and the AS-level internet topology. IEEE/ACM Trans. Netw. 11(4), 514–524 (2003).  https://doi.org/10.1109/TNET.2003.815300CrossRefzbMATHGoogle Scholar
  16. 16.
    M.E.J. Newman, J. Park, Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)CrossRefGoogle Scholar
  17. 17.
    D.W. Guo, X.Y. Meng, M. Liu, C.F. Hou, Naming game on multi-community network. J. Comput. Res. Dev. 52(2), 487–498 (2015)Google Scholar
  18. 18.
    Y. Lou, G.R. Chen, Z.P. Fan, L.N. Xiang, Local communities obstruct global consensus: naming game on multi-local-world networks. Phys. A 492, 1741–1752 (2018).  https://doi.org/10.1016/j.physa.2017.11.094CrossRefGoogle Scholar
  19. 19.
    Lou, Y., Chen, G.R., Fan, Z.P., Xiang, L.N.: Supplementary information for paper “local communities obstruct global consensus: naming game on multi-local-world networks” (2015), http://www.ee.cityu.edu.hk/~gchen/pdf/MLW-SI.pdf
  20. 20.
    B. Li, G.R. Chen, T.W.S. Chow, Naming game with multiple hearers. Commun. Nonlinear Sci. Numer. Simul. 18, 1214–1228 (2013).  https://doi.org/10.1016/j.cnsns.2012.09.022CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina
  2. 2.Centre for Chaos and Complex NetworksCity University of Hong KongHong KongChina

Personalised recommendations