Advertisement

Naming Game pp 23-42 | Cite as

Finite-Memory Naming Game

  • Guanrong Chen
  • Yang Lou
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 34)

Abstract

One crucial assumption on the minimal naming game model is that all agents have infinite capacity of memory, or practically sufficiently large volume of memory, for storing all words that they learned. However, in reality this may not always be the case. Information overflow due to lack of sufficient memory is common in real-world systems such as various communication networks. In this chapter, the finite-memory naming game (FMNG) model [1] is introduced. Agents in FMNG have finite volumes of memory, and the memory size of each agent is determined beforehand. FMNG takes the bounded rationality of agents into account and mimics the situation that there are only finite capability and resource for information storage in the game system. The process of FMNG works under the same framework as the minimal naming game, except that each agent has a limited memory capacity.

References

  1. 1.
    W.X. Wang, B.Y. Lin, C.L. Tang, G.R. Chen, Agreement dynamics of finite-memory language games on networks. Eur. Phys. J. B 60(4), 529–536 (2007).  https://doi.org/10.1140/epjb/e2008-00013-5CrossRefzbMATHGoogle Scholar
  2. 2.
    G. Fu, Y. Cai, W. Zhang, Analysis of naming game over networks in the presence of memory loss. Physica A 479, 350–361 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Nonequilibrium dynamics of language games on complex networks. Phys. Rev. E 74(3), 036105 (2006).  https://doi.org/10.1103/PhysRevE.74.036105CrossRefGoogle Scholar
  4. 4.
    R.R. Liu, C.X. Jia, H.X. Yang, B.H. Wang, Naming game on small-world networks with geographical effects. Physica A 388, 3615–3620 (2009).  https://doi.org/10.1016/j.physa.2009.05.007CrossRefGoogle Scholar
  5. 5.
    D. Boyer, O. Miramontes, Interface motion and pinning in small-world networks. Phys. Rev. E 67(3), 035102 (2003).  https://doi.org/10.1103/PhysRevE.67.035102CrossRefGoogle Scholar
  6. 6.
    C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Comparison of voter and glauber ordering dynamics on networks. Phys. Rev. E 71(6), 066107 (2005).  https://doi.org/10.1103/PhysRevE.71.066107CrossRefGoogle Scholar
  7. 7.
    C. Castellano, D. Vilone, A. Vespignani, Incomplete ordering of the voter model on small-world networks. EPL (Europhys. Lett.) 63(1), 153–158 (2003)CrossRefGoogle Scholar
  8. 8.
    I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Critical coarsening without surface tension: the universality class of the voter model. Phys. Rev. Lett. 87(4), 045701 (2001).  https://doi.org/10.1103/PhysRevLett.87.045701CrossRefGoogle Scholar
  9. 9.
    X. Niu, C. Doyle, G. Korniss, B.K. Szymanski, The impact of variable commitment in the naming game on consensus formation. Sci. Rep. 7, 41750 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Suchecki, V.M. Eguíluz, M. San Miguel, Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev. E 72(3), 036132 (2005).  https://doi.org/10.1103/PhysRevE.72.036132CrossRefGoogle Scholar
  11. 11.
    D. Vilone, C. Castellano, Solution of voter model dynamics on annealed small-world networks. Phys. Rev. E 69(1), 016109 (2004).  https://doi.org/10.1103/PhysRevE.69.016109CrossRefGoogle Scholar
  12. 12.
    P. Erdös, A. Rényi, On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  13. 13.
    P. Erdös, A. Rényi, On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica 12(1–2), 261–267 (1964)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998).  https://doi.org/10.1038/30918CrossRefzbMATHGoogle Scholar
  15. 15.
    D.J. Watts, The “new” science of networks. Annu. Rev. Sociol 30, 243–270 (2004).  https://doi.org/10.1146/annurev.soc.30.020404.104342CrossRefGoogle Scholar
  16. 16.
    R. Albert, A.L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002).  https://doi.org/10.1103/RevModPhys.74.47MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A.L. Barabási, R. Albert, H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281(1), 69–77 (2000).  https://doi.org/10.1016/S0378-4371(00)00018-2CrossRefGoogle Scholar
  18. 18.
    A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Gao, B. Li, G. Schoenebeck, F.Y. Yu, Engineering agreement: the naming game with asymmetric and heterogeneous agents, in AAAI, pp. 537–543 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina
  2. 2.Centre for Chaos and Complex NetworksCity University of Hong KongHong KongChina

Personalised recommendations