Advertisement

Naming Game pp 11-22 | Cite as

Preliminaries

  • Guanrong Chen
  • Yang Lou
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 34)

Abstract

A complex network is a graph with nontrivial topological features that do not occur in “simple” (“regular”) networks such as chains, trees, lattices, or fully-connected graphs (also called complete graphs), but often occur in some irregular complex forms from modeling real-world systems (Chen et al, Introduction to complex networks: models, structures and dynamics. High Education Press, Beijing, 2014) [1].

References

  1. 1.
    G.R. Chen, X.F. Wang, X. Li, Introduction to Complex Networks: Models, Structures and Dynamics (High Education Press, Beijing, 2014). ISBN 978-1-118-71811-7Google Scholar
  2. 2.
    G.R. Chen, Z.P. Fan, X. Li, Modelling the complex internet topology, Complex Dynamics in Communication Networks (Springer, Berlin, 2005), pp. 213–234.  https://doi.org/10.1007/10973509_9
  3. 3.
    Z.P. Fan, G.R. Chen, Y.N. Zhang, A comprehensive multi-local-world model for complex networks. Phys. Lett. A 373(18), 1601–1605 (2009).  https://doi.org/10.1016/j.physleta.2009.02.072CrossRefzbMATHGoogle Scholar
  4. 4.
    P. Erdös, A. Rényi, On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica 12(1–2), 261–267 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998).  https://doi.org/10.1038/30918CrossRefzbMATHGoogle Scholar
  6. 6.
    A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Baronchelli, A gentle introduction to the minimal naming game. Belg. J. Linguist 30(1), 171–192 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Nonequilibrium dynamics of language games on complex networks. Phys. Rev. E 74(3), 036105 (2006).  https://doi.org/10.1103/PhysRevE.74.036105CrossRefGoogle Scholar
  9. 9.
    R.R. Liu, C.X. Jia, H.X. Yang, B.H. Wang, Naming game on small-world networks with geographical effects. Phys. A 388, 3615–3620 (2009).  https://doi.org/10.1016/j.physa.2009.05.007CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina
  2. 2.Centre for Chaos and Complex NetworksCity University of Hong KongHong KongChina

Personalised recommendations