Advertisement

Porting and Optimizing VASP on the SW26010

  • Leisheng LiEmail author
  • Qiao Sun
  • Xin Liu
  • Changmao Wu
  • Haitao Zhao
  • Changyou Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11338)

Abstract

VASP (Vienna Ab initio Simulation Package) is a prevalent first-principle software framework. It is so widely used that its runtime usually dominates the usage of current supercomputers. The porting and optimization of VASP to the Sunway TaihuLight supercomputer, a newly heterogeneous many-core platform based on SW26010 CPU, becomes of great importance. In this paper, we focus on the challenges in porting and optimizing VASP on the SW26010 CPU. Optimizations on three types of time-consuming kernels, which include matrix operations, FFT, and certain domain-specific computing primitives, are carried out base on thorough performance profiling. The experimental results are shown by the case of RELAX, where speedup of 2.90x and 4.48x is sustained respectively for both of the iterative diagonalization methods in VASP, RMM-DIIS (RMM) and block Davidson (DAV).

Keywords

SW26010 Many-core CPU Density functional theory VASP LDM 

References

  1. 1.
    Fu, H., Liao, J., Yang, J., et al.: The Sunway TaihuLight supercomputer: system and applications. Sci. China: Inf. Sci. 59(7), 1–16 (2016)Google Scholar
  2. 2.
    Yang, C., Xue, W., Fu, H., et al.: 10 m-core scalable fully-implicit solver for non hydrostatic atmospheric dynamics. In: Proceedings of SC16. ACM, Salt Lake City (2016)Google Scholar
  3. 3.
    Fu, H., He, C., Chen, B., et al.: 18.9-pops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios. In: Proceedings of SC17, Denver, CO, USA (2017)Google Scholar
  4. 4.
  5. 5.
    Maintz, S., Eck, B., Dronskowski, R.: Speeding up plane-wave electronic-structure calculations using graphics-processing units. Comput. Phys. Commun. 182, 1421–1427 (2011)CrossRefGoogle Scholar
  6. 6.
    Hutchinson, M., Widom, M.: VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron. Comput. Phys. Commun. 183, 1422–1426 (2012)CrossRefGoogle Scholar
  7. 7.
    Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., et al.: Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 33, 2581–2589 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhao, Z.J., Marsman, M., Wende, F., Kim, J.: Performance of hybrid MPI/OpenMP VASP on cray XC40 based on intel knights landing many integrated core architecture. In: CUG Conference Proceedings (2017)Google Scholar
  9. 9.
    Algorithms used in VASP calculate electronic groundstate. https://cms.mpi.univie.ac.at/vasp/vasp/Algorithms_used_in_VASP_calculate_electronic_groundstate.html. Accessed 23 May 2018
  10. 10.
    Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  11. 11.
    Wende, F., Marsman, M., Zhao, Z., et al.: Porting VASP from MPI to MPI+OpenMP [SIMD]. In: de Supinski, B., Olivier, S., Terboven, C., Chapman, B., Müller, M. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 107–122. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-65578-9_8CrossRefGoogle Scholar
  12. 12.
    Tuning VASP: Fast Fourier Transforms. https://www.nsc.liu.se/~pla/blog/2013/01/10/tuning-ffts/. Accessed 23 May 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Leisheng Li
    • 1
    Email author
  • Qiao Sun
    • 1
  • Xin Liu
    • 2
  • Changmao Wu
    • 1
  • Haitao Zhao
    • 1
  • Changyou Zhang
    • 1
  1. 1.Laboratory of Parallel Software and Computational ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.National Research Centre of Parallel Computer Engineering and TechnologyWuxiChina

Personalised recommendations