Advertisement

A 70-W Asymmetrical Doherty Power Amplifier for 5G Base Stations

  • Ahmed M. AbdulkhaleqEmail author
  • Yasir Al-Yasir
  • Naser Ojaroudi Parchin
  • Jack Brunning
  • Neil McEwan
  • Ashwain Rayit
  • Raed A. Abd-Alhameed
  • James Noras
  • Nabeel Abduljabbar
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)

Abstract

Much attention has been paid to making 5G developments more energy efficient, especially in view of the need for using high data rates with more complex modulation schemes within a limited bandwidth. The concept of the Doherty power amplifier for improving amplifier efficiency is explained in addition to a case study of a 70 W asymmetrical Doherty power Amplifier using two GaN HEMTs transistors with peak power ratings of 45 W and 25 W. The rationale for this choice of power ratio is discussed. The designed circuit works in the 3.4 GHz frequency band with 200 MHz bandwidth. Rogers RO4350B substrate with dielectric constant εr = 4.66 and thickness 0.035 mm is used. The performance analysis of the Doherty power amplifier is simulated using AWR MWO software. The simulated results showed that 54–64% drain efficiency has been achieved at 8 dB back-off within the specified bandwidth with an average gain of 10.7 dB.

Keywords

Asymmetrical Doherty Power amplifier Drain efficiency GaN HEMTs Wireless communications LTE-Advanced 

Notes

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424 [10].

References

  1. 1.
    Cripps, S.C.: RF Power Amplifier for Wireless Communications. Artech House, Norwood (1999)Google Scholar
  2. 2.
    Camarchia, V., Pirola, M., Quaglia, R., Jee, S., Cho, Y., Kim, B.: The Doherty power amplifier: review of recent solutions and trends. IEEE Trans. Microw. Theor. Tech. 63, 559–571 (2015)CrossRefGoogle Scholar
  3. 3.
    Hussaini, A.S., Abd-Alhameed, R.A, Rodriguez, J.: Implementation of efficiency enhancement techniques in the linear region of operations of power amplifier. In: 7th Conference on Telecommunications, pp. 105–108 (2009)Google Scholar
  4. 4.
    Doherty, W.H.: A new high efficiency power amplifier for modulated waves. Proc. IRE 24(9), 1163–1182 (1936)CrossRefGoogle Scholar
  5. 5.
    Kato, K., Miwa, S., et al.: A 83-W, 51% GaN HEMT Doherty Power amplifier for 3.5-GHz-Band LTE base stations. In: 46th European Microwave Conference (EuMC), pp. 572–575 (2016)Google Scholar
  6. 6.
    Rubio, J.M., Fang, J., et al.: 3–3.6 GHz Wideband GaN Doherty Power amplifier exploiting output compensation stages. IEEE Trans. Microw. Theor. Tech. 60(8), 2543–2548 (2012)CrossRefGoogle Scholar
  7. 7.
    Kosaka, N., Fujiwara, S., et al.: A high-efficiency and high-gain, plastic packaged GaN HEMT for 3.5-GHz-Band LTE base stations. In: IEEE International Symposium on Radio-Frequency Integration Technology (RFIT) (2016)Google Scholar
  8. 8.
    Huang, C., He, S., Dai, Z., Pang J., Hu, Z.: 80 W high gain and broadband Doherty Power amplifier for 4/5G wireless communication systems. In: IEEE MTT-S International Microwave Symposium (IMS) (2016)Google Scholar
  9. 9.
    Hue, X., Baroudi, F., Bollinger, L., Szymanowski, M., Nanan, J.: 12/25 W wideband LDMOS Power Amplifier IC (3400–3800 MHz) for 5G base station applications. In: 47th European Microwave Conference (EuMC) (2017)Google Scholar
  10. 10.
    Rodriguez, J., Radwan A., et al.: SECRET secure network coding for reduced energy next generation mobile small cells: a European Training Network in wireless communications and networking for 5G. In: Internet Technologies and Applications (ITA) (2017)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Ahmed M. Abdulkhaleq
    • 1
    • 2
    Email author
  • Yasir Al-Yasir
    • 2
  • Naser Ojaroudi Parchin
    • 2
  • Jack Brunning
    • 1
  • Neil McEwan
    • 1
  • Ashwain Rayit
    • 1
  • Raed A. Abd-Alhameed
    • 2
  • James Noras
    • 2
  • Nabeel Abduljabbar
    • 2
  1. 1.SARAS Technology LimitedLeedsUK
  2. 2.Faculty of Engineering and InformaticsBradford UniversityBradfordUK

Personalised recommendations