Advertisement

Key Management for Secure Network Coding-Enabled Mobile Small Cells

  • Marcus de ReeEmail author
  • Georgios Mantas
  • Ayman Radwan
  • Jonathan Rodriguez
  • Ifiok Otung
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)

Abstract

The continuous growth in wireless devices connected to the Internet and the increasing demand for higher data rates put ever increasing pressure on the 4G cellular network. The EU funded H2020-MSCA project “SECRET” investigates a scenario architecture to cover the urban landscape for the upcoming 5G cellular network. The studied scenario architecture combines multi-hop device-to-device (D2D) communication with network coding-enabled mobile small cells. In this scenario architecture, mobile nodes benefit from high transmission speeds, low latency and increased energy efficiency, while the cellular network benefits from a reduced workload of its base stations. However, this scenario architecture faces various security and privacy challenges. These challenges can be addressed using cryptographic techniques and protocols, assuming that a key management scheme is able to provide mobile nodes with secret keys in a secure manner. Unfortunately, existing key management schemes are unable to cover all security and privacy challenges of the studied scenario architecture. Certificateless key management schemes seem promising, although many proposed schemes of this category of key management schemes require a secure channel or lack key update and key revocation procedures. We therefore suggest further research in key management schemes which include secret key sharing among mobile nodes, key revocation, key update and mobile node authentication to fit with our scenario architecture.

Keywords

5G Security Privacy Key management Mobile small cells Network coding D2D communications 

Notes

Acknowledgments

This research work leading to this publication has received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement H2020-MSCA-ITN-2016-SECRET-722424.

References

  1. 1.
    Ericsson: More than 50 Billion Connected Devices (white paper) (2011)Google Scholar
  2. 2.
    Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 (white paper) (2017)Google Scholar
  3. 3.
    Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015)CrossRefGoogle Scholar
  4. 4.
    Nokia Siemens Networks: 2020: Beyond 4G Radio Evolution for the Gigabit Experience (white paper) (2011)Google Scholar
  5. 5.
    Wang, C., et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRefGoogle Scholar
  6. 6.
    Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., Pan, Z.: Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)CrossRefGoogle Scholar
  7. 7.
    Bangerter, B., Talwar, S., Arefi, R., Stewart, K.: Networks and devices for the 5G era. IEEE Commun. Mag. 52(2), 90–96 (2014)CrossRefGoogle Scholar
  8. 8.
    Sucasas, V., Mantas, G., Rodriguez, J.: Security challenges for cloud radio access networks. In: Backhauling/Fronthauling for Future Wireless Systems, pp. 195–211. Wiley, Chichester (2016)CrossRefGoogle Scholar
  9. 9.
    Mantas, G., Komninos, N., Rodriguez, J., Logota, E., Marques, H.: Security for 5G communications. In: Fundamentals of 5G Mobile Networks, pp. 207–220. Wiley, Chichester (2015)Google Scholar
  10. 10.
    Andrews, J., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  11. 11.
    Ahlswede, R., Cai, N., Li, R., Yeung, R.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Esfahani, A., Mantas, G., Rodriguez, J., Neves, J.: An efficient homomorphic MAC-based scheme against data and tag pollution attacks in network coding-enabled wireless networks. Int. J. Inf. Secur. 16(6), 627–639 (2017)CrossRefGoogle Scholar
  13. 13.
    Iqbal, M., Dai, B., Huang, B., Hassan, A., Yu, S.: Survey of network coding-aware routing protocols in wireless networks. J. Netw. Comput. Appl. 34(6), 1956–1970 (2011)CrossRefGoogle Scholar
  14. 14.
    Chachulski, S., Jennings, M., Katti, S., Katabi, D.: Trading structure for randomness in wireless opportunistic routing. SIGCOMM Comput. Commun. Rev. 37(4), 169–180 (2007)CrossRefGoogle Scholar
  15. 15.
    Radwan, A., Rodriguez, J.: Cloud of mobile small-cells for higher data-rates and better energy-efficiency. In: 23th European Wireless Conference on European Wireless 2017, pp. 105–109. VDE, Dresden, Germany (2017)Google Scholar
  16. 16.
    Asadi, A., Wang, Q., Mancuso, V.: A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutor. 16(4), 1801–1819 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Pan, E., Song, L., Saad, W., Dawy, Z., Han, Z.: Social network aware device-to-device communication in wireless networks. IEEE Trans. Wirel. Commun. 14(1), 177–190 (2015)CrossRefGoogle Scholar
  18. 18.
    SECRET. http://h2020-secret.eu/index.html. Last Accessed 05 May 2018
  19. 19.
    Gupta, A., Jha, R.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)CrossRefGoogle Scholar
  20. 20.
    Chou, S., Chiu, T., Yu, Y., Pang, A.: Mobile small cell deployment for next generation cellular networks. In: Global Communications Conference (GLOBECOM), pp. 4852–4857. IEEE, Austin (2014)Google Scholar
  21. 21.
    Haus, M., Waqas, M., Ding, A., Li, Y., Tarkoma, S., Ott, J.: Security and privacy in device-to-device (D2D) communication: a review. IEEE Commun. Surv. Tutor. 19(2), 1054–1079 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhang, A., Lin, X.: Security-aware and privacy-preserving D2D communications in 5G. IEEE Netw. 31(4), 70–77 (2017)CrossRefGoogle Scholar
  23. 23.
    Lu, L., et al.: Pseudo trust: zero-knowledge authentication in anonymous P2Ps. IEEE Trans. Parallel Distrib. Syst. 19(10), 1325–1337 (2008)CrossRefGoogle Scholar
  24. 24.
    Kim, M., et al.: On counteracting byzantine attacks in network coded peer-to-peer networks. IEEE J. Sel. Areas Commun. 28(5), 692–702 (2010)CrossRefGoogle Scholar
  25. 25.
    Esfahani, A., Mantas, G., Yang, D., Nascimento, A., Rodriguez, J., Neves, J.: Towards secure network coding-enabled wireless sensor networks in cyber-physical systems. In: Cyber Physical Systems: From Theory to Practice, pp. 395–414. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  26. 26.
    Esfahani, A., Yang, D., Mantas, G., Nascimento, A., Rodriguez, J.: Dual-homomorphic message authentication code scheme for network coding-enabled wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(7), 1–10 (2015)CrossRefGoogle Scholar
  27. 27.
    Esfahani, A., Mantas, G., Rodriguez, J., Nascimento, A., Neves, J.: A null space-based MAC scheme against pollution attacks to random linear network coding. In: International Conference on Communication Workshop (ICCW), pp. 1521–1526. IEEE, London (2015)Google Scholar
  28. 28.
    Wu, X., Xu, Y., Yuen, C., Xiang, L.: A tag encoding scheme against pollution attack to linear network coding. IEEE Trans. Parallel Distrib. Syst. 25(1), 33–42 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhang, P., Jiang, Y., Lin, C., Yao, H., Wasef, A., Shen, X.: Padding for orthogonality: efficient subspace authentication for network coding. In: 2011 Proceedings IEEE INFOCOM, pp. 1026–1034. IEEE, Shanghai, China (2011)Google Scholar
  30. 30.
    Esfahani, A., Mantas, G., Rodriguez, J.: An efficient null space-based homomorphic MAC scheme against tag pollution attacks in RLNC. IEEE Commun. Lett. 20(5), 918–921 (2016)CrossRefGoogle Scholar
  31. 31.
    Esfahani, A., Mantas, G., Silva, H., Rodriguez, J., Neves, J.: An efficient MAC-based scheme against pollution attacks in XOR network coding-enabled WBANs for remote patient monitoring systems. EURASIP J. Wirel. Commun. Netw. 2016(113), 1–10 (2016)Google Scholar
  32. 32.
    Yang, D., Esfahani, A., Mantas, G., Rodriguez, J.: Jointly padding for subspace orthogonality against tag pollution. In: 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 85–89. IEEE, Athens, Greece (2014)Google Scholar
  33. 33.
    Esfahani, A., Yang, D., Mantas, G., Nascimento, A., Rodriguez, J.: An improved homomorphic message authentication code scheme for RLNC-enabled wireless networks. In: 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 80–84. IEEE, Athens, Greece (2014)Google Scholar
  34. 34.
    Esfahani, A., Mantas, G., Monteiro, V., Ramantas, K., Datsika, E., Rodriguez, J.: Analysis of a homomorphic MAC-based scheme against tag pollution in RLNC-enabled wireless networks. In: 20th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 156–160. IEEE, Guildford (2015)Google Scholar
  35. 35.
    Mu, B., Bakiras, S.: Private proximity detection for convex polygons. Tsinghua Sci. Technol. 21(3), 270–280 (2016)CrossRefGoogle Scholar
  36. 36.
    Zickuhr, K.: Location-based services. http://www.pewinternet.org/2013/09/12/location-based-services/. Last Accessed 13 Mar 2018
  37. 37.
    Li, Z., Shen, H.: Game theoretic analysis of cooperation incentive strategies in mobile ad hoc networks. IEEE Trans. Mob. Comput. 11(8), 1287–1303 (2012)CrossRefGoogle Scholar
  38. 38.
    Chen, T., Zhu, L., Wu, F., Zhong, S.: Stimulating cooperation in vehicular ad hoc networks: a coalitional game theoretic approach. IEEE Trans. Veh. Technol. 60(2), 566–579 (2011)CrossRefGoogle Scholar
  39. 39.
    Sun, J., Chen, X., Zhang, J., Zhang, Y., Zhang, J.: SYNERGY: a game-theoretical approach for cooperative key generation in wireless networks. In: 2014 Proceedings IEEE INFOCOM, pp. 997–1005. IEEE, Toronto (2014)Google Scholar
  40. 40.
    Chen, X., Proulx, B., Gong, X., Zhang, J.: Exploiting social ties for cooperative D2D communications: a mobile social networking case. IEEE/ACM Trans. Netw. 23(5), 1471–1484 (2015)CrossRefGoogle Scholar
  41. 41.
    Jiang, L., Tian, H.: Secure beamforming in cooperative D2D communications with simultaneous wireless information and power transfer. In: 2016 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. IEEE, Chengdu, China (2016)Google Scholar
  42. 42.
    Zheng, J., Xu, S., Zhao, F., Wang, D., Li, Y.: A novel detective and self-organized certificateless key management in mobile ad hoc networks. In: 2013 IEEE International Conference on Granular Computing (GrC), pp. 443–448. IEEE, Beijing, China (2013)Google Scholar
  43. 43.
    Liu, Q., Bai, X.: Survey on certificateless key management schemes in mobile ad hoc networks. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 334–339. IEEE, Macau, China (2017)Google Scholar
  44. 44.
    Anand, D., Khemchandani, V., Sharma, R.: Identity-based cryptography techniques and applications (a review). In: 5th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 343–348. IEEE, Mathura, India (2013)Google Scholar
  45. 45.
    Gharib, M., Moradlou, Z., Doostari, M., Movaghar, A.: Fully distributed ECC-based key management for mobile ad hoc networks. Comput. Netw. 113, 269–283 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Marcus de Ree
    • 1
    • 2
    Email author
  • Georgios Mantas
    • 1
    • 3
  • Ayman Radwan
    • 1
  • Jonathan Rodriguez
    • 1
    • 2
  • Ifiok Otung
    • 2
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.University of South WalesPontypriddUK
  3. 3.Faculty of Engineering and ScienceUniversity of GreenwichLondonUK

Personalised recommendations