Advertisement

MoM-GEC Analysis of Fraunhofer-Region Characteristics over Rectangular Aperture

  • Imen Khadhraoui
  • Taha Ben Salah
  • Taoufik Aguili
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)

Abstract

In this paper, a determination of radiation characteristics is performed using rectangular aperture antenna theory and transverse electric field calculation with method of moments and generalized equivalent circuit MoM-GEC for a rectangular patch antenna contained in an open-ended waveguide. This study is based on aperture antenna theory and field equivalence principle applied to the two-dimensional Fourier transform integrals over the aperture. We consider Fraunhofer-zone characteristics in terms of radiation pattern and directivity computed over an aperture through an assumed perfectly conducting screen. Results show an acceptable agreement between computed and simulated radiation data in E and H planes.

Keywords

Aperture antenna Radiation characteristics MoM-GEC analysis Planar circuit 

References

  1. 1.
    Zhang, J.H., Wang, J.L.: Maximum power radiated from an aperture antenna before air breakdown in the near-field region. IEEE Trans. Electromagn. Compat. 53(2), 540–543 (2011)CrossRefGoogle Scholar
  2. 2.
    Yaghjian, A.D.: Approximate formulas for the far field and gain of open-ended rectangular waveguide. IEEE Trans. Antennas Propag. 32(4), 378–384 (1984)CrossRefGoogle Scholar
  3. 3.
    Bird, T.S., Lingasamy, V., Selvan, K.T., Sun, H.: Improved finite-range gain formula for openended rectangular waveguides and pyramidal horns. IET Microwaves Antennas Propag. 11, 2054–2058 (2017)CrossRefGoogle Scholar
  4. 4.
    Maheshwari, A., Behera, S., Thiyam, R., Maiti, S., Mukherjee, A.: Near field to Far field Transformation by Asymptotic evaluation of Aperture Radiation field. In: International Conference on Signal Propagation and Computer Technology (ICSPCT) (2014)Google Scholar
  5. 5.
    Lin, Y., Shafai, L.: Moment-method solution of the near field distribution and far field patterns of microstrip antennas. In: IEE Proceedings (1985)Google Scholar
  6. 6.
    Salah, T.B.: Analyse d’une antenne planaire: Utilisation des fonctions d’attache dans la methode des moments. ENIT Tunisia (2003)Google Scholar
  7. 7.
    Harrington, R.F.: Field Computation by Moment-methods. IEEE Antennas and Propagation Society. Wiley (1993)Google Scholar
  8. 8.
    Aubert, H., Baudrand, H.: L’electromagnetisme par les schemas equivalents. Cepadues (2003)Google Scholar
  9. 9.
    Balanis, C.A.: Antenna Theory Analysis and Design, 3rd edn. Wiley-Blackwell (1982)Google Scholar
  10. 10.
    Rengarajan, S.R., Rahmat-Samii, Y.: The field equivalence principle: illustration of the establishment of the non-intuitive null fields. IEEE Antennas Propag. Mag. 42(4), 122–128 (2000)CrossRefGoogle Scholar
  11. 11.
    Sarkar, T.K., Arvas, E.: An integral equation approach to the analysis of finite microstrip antennas: volume/surface formulation. IEEE Trans. Antennas Propag. 38(3), 305–312 (1990)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Communications Systems Laboratory (SysCom), National Engineering School of Tunis (ENIT)University of Tunis El ManarTunisTunisia
  2. 2.Networked Objects Control and Communication Systems (NOCCS), National Engineering School of Sousse (ENISo)University of SousseSousseTunisia

Personalised recommendations