Advertisement

Spatial Modulation or Spatial Multiplexing for mmWave Communications?

  • Salma Elkawafi
  • Abdelhamid Younis
  • Raed MeslehEmail author
  • Abdulla Abouda
  • Ahmed Elbarsha
  • Mohammed Elmusrati
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 263)

Abstract

In this paper, two large scale (LS)–multiple–input multiple–output (MIMO) systems and their performance over 3D statistical outdoor millimeter wave (mmWave) channel model are considered and thoroughly analyzed. Namely, spatial multiplexing (SMX) and spatial modulation (SM) systems are considered. The performance of both systems in terms of average bit error ratio (ABER) and channel capacity are derived and studied. Obtained results divulge that SM can achieve higher theoretical capacity than SMX system. Further, SMX system is shown to offer better ABER and mutual information performance as compared to SM system for the same system configuration. Yet, SM demonstrate significant energy efficiency (EE) enhancement for large scale number of transmit antennas.

Keywords

Millimeter-wave (mmWave) communication Spatial modulation (SM) Spatial Multiplexing (SMX) Large–scale MIMO (LS–MIMO) 

References

  1. 1.
    3GPP: Spatial Channel Model for Multiple Input Multiple Output MIMO Simulations. document 3GPP TR 25.996 V12.0.0, September 2014Google Scholar
  2. 2.
    Althunibat, S., Mesleh, R.: Enhancing spatial modulation system performance through signal space diversity. IEEE Commun. Lett. 22(6), 1136–1139 (2018)CrossRefGoogle Scholar
  3. 3.
    Andrews, J., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  4. 4.
    Auer, G., et al.: How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18(5), 40–49 (2011)CrossRefGoogle Scholar
  5. 5.
    Badarneh, O.S., Mesleh, R.: A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Trans. Commun. 64(7), 2961–2970 (2016)CrossRefGoogle Scholar
  6. 6.
    Barreto, A., et al.: 5G – wireless communications for 2020. J. Commun. Inf. Syst. 31, 146–163 (2016)Google Scholar
  7. 7.
    Basar, E.: Index modulation techniques for 5G wireless networks. IEEE Commun. Mag. 54(7), 168–175 (2016)CrossRefGoogle Scholar
  8. 8.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021. White Paper, CISCO, February 2017Google Scholar
  9. 9.
    Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1(2), 41–59 (1996)CrossRefGoogle Scholar
  10. 10.
    Kühn, V.: Wireless Communications over MIMO Channels. Wiley, Chichester (2006)CrossRefGoogle Scholar
  11. 11.
    Mesleh, R., Haas, H., Sinanović, S., Ahn, C.W., Yun, S.: Spatial modulation. IEEE Trans. Veh. Tech. 57(4), 2228–2241 (2008)CrossRefGoogle Scholar
  12. 12.
    Mesleh, R., Hiari, O., Younis, A., Alouneh, S.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)CrossRefGoogle Scholar
  13. 13.
    Mietzner, J., Schober, R., Lampe, L., Gerstacker, W.H., Höeher, P.A.: Multiple-antenna techniques for wireless communications - a comprehensive literature survey. IEEE Commun. Surv. Tutor. 11(2), 87–105 (2009)CrossRefGoogle Scholar
  14. 14.
    Molisch, A.F., Steinbauer, M., Toeltsch, M., Bonek, E., Thoma, R.S.: Capacity of MIMO systems based on measured wireless channels. IEEE J. Sel. Areas Commun. 20(3), 561–569 (2002)CrossRefGoogle Scholar
  15. 15.
    Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5(2), 128–137 (1987)CrossRefGoogle Scholar
  16. 16.
    Samimi, M.K., Rappaport, T.S.: 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Trans. Microw. Theor. Tech. 64(7), 2207–2225 (2016)CrossRefGoogle Scholar
  17. 17.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 & 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stavridis, A., Sinanović, S., Renzo, M.D., Haas, H.: Energy evaluation of spatial modulation at a multi-antenna base station. In: Proceedings of the 78th IEEE Vehicular Technology Conference (VTC), Las Vegas, 2–5 September 2013Google Scholar
  19. 19.
    Zheng, K., Zhao, L., Mei, J., Shao, B., Xiang, W., Hanzo, L.: Survey of large-scale MIMO systems. IEEE Commun. Surv. Tutor. 17(3), 1738–1760 (2015)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Salma Elkawafi
    • 1
  • Abdelhamid Younis
    • 1
  • Raed Mesleh
    • 2
    Email author
  • Abdulla Abouda
    • 3
  • Ahmed Elbarsha
    • 1
  • Mohammed Elmusrati
    • 4
  1. 1.Electrical and Electronics Engineering Department, Faculty of EngineeringUniversity of BenghaziBenghaziLibya
  2. 2.Electrical and Communications Engineering Department, School of Electrical Engineering and Information TechnologyGerman Jordanian UniversityAmmanJordan
  3. 3.Almadar Research and Development OfficeAlmadar Aljadid CompanyTripoliLibya
  4. 4.The Department of Computer ScienceUniversity of VaasaVaasaFinland

Personalised recommendations