Advertisement

Plasma-Catalytic Removal of VOCs

  • Pieter Cools
  • Nathalie De Geyter
  • Rino MorentEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)

Abstract

Since the Kyoto protocol in 1997, there has been a growing public awareness and concern around environmental pollution. This has stimulated research groups around the world to further explore the possibilities of plasma catalysis as an eco-friendly technique for the abatement of dilute volatile organic compounds (VOCs) present in waste gas streams and indoor air. This chapter aims to review recent progress and challenges in the removal of VOCs using nonthermal plasma in combination with a catalyst. The influence of a range of critical process parameters on the performance of this hybrid process has been discussed.

References

  1. 1.
    Devins, J. C., & Burton, M. (1954). Formation of Hydrazine in electric discharge decomposition of Ammonia1, 2. Journal of the American Chemical Society, 76, 2618–2626.CrossRefGoogle Scholar
  2. 2.
    Gicquel, A., Cavadias, S., & Amouroux, J. (1986). Heterogeneous catalysis in low-pressure plasmas. Journal of Physics D: Applied Physics, 19, 2013–2029.ADSCrossRefGoogle Scholar
  3. 3.
    Venugopalan, M., & Vepřek, S. (1983). Kinetics and catalysis in plasma chemistry. In Plasma chemistry IV (pp. 1–58). New York: Springer-Verlag.Google Scholar
  4. 4.
    Badyal, J. (1996). Catalysis and plasma chemistry at solid surfaces. Topics in Catalysis, 3, 255–264.CrossRefGoogle Scholar
  5. 5.
    Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.CrossRefGoogle Scholar
  6. 6.
    Holzer, F., Roland, U., & Kopinke, F.-D. (2002). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Applied Catalysis B: Environmental, 38, 163–181.CrossRefGoogle Scholar
  7. 7.
    Kim, H. H. (2004). Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Processes and Polymers, 1, 91–110.CrossRefGoogle Scholar
  8. 8.
    Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43, 2216–2227.ADSCrossRefGoogle Scholar
  9. 9.
    Yu, S. J., & Chang, M. B. (2001). Oxidative conversion of PFC via plasma processing with dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 21, 311–327.CrossRefGoogle Scholar
  10. 10.
    Chang, M. B., & Huang, C. P. (1999). Oxidative conversion of methane via plasma processing with dielectric barrier discharges. Journal of Advanced Oxidation Technologies, 4, 333–338.Google Scholar
  11. 11.
    Chang, M. B., & Lee, H. M. (2004). Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catalysis Today, 89, 109–115.CrossRefGoogle Scholar
  12. 12.
    Chen, X., Rozak, J., Lin, J.-C., Suib, S. L., Hayashi, Y., & Matsumoto, H. (2001). Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT (plasma and catalyst integrated technologies) reactors. Applied Catalysis A: General, 219, 25–31.CrossRefGoogle Scholar
  13. 13.
    Kim, H.-H., Ogata, A., & Futamura, S. (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis B: Environmental, 79, 356–367.CrossRefGoogle Scholar
  14. 14.
    Neyts, E., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation—A review. Journal of Physics D: Applied Physics, 47, 224010.ADSCrossRefGoogle Scholar
  15. 15.
    Kim, H.-H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, Part 1, 13–22.CrossRefGoogle Scholar
  16. 16.
    Malik, M. A., Minamitani, Y., & Schoenbach, K. H. (2005). Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Transactions on Plasma Science, 33, 50–56.ADSCrossRefGoogle Scholar
  17. 17.
    Chen, H. L., Lee, H. M., Chen, S. H., & Chang, M. B. (2008). Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 47, 2122–2130.CrossRefGoogle Scholar
  18. 18.
    Holzer, F., Kopinke, F., & Roland, U. (2005). Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing, 25, 595–611.CrossRefGoogle Scholar
  19. 19.
    Roland, U., Holzer, F., & Kopinke, F.-D. (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B: Environmental, 58, 217–226.CrossRefGoogle Scholar
  20. 20.
    Chae, J. O., Demidiouk, V., Yeulash, M., Choi, I. C., & Jung, T. G. (2004). Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Transactions on Plasma Science, 32, 493–497.ADSCrossRefGoogle Scholar
  21. 21.
    Zhu, Y.-R., Li, Z.-H., Zhou, Y.-H., Lv, J., & Wang, H.-T. (2005). Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. Reaction Kinetics and Catalysis Letters, 87, 33–41.CrossRefGoogle Scholar
  22. 22.
    Liu, C.-J., Zou, J., Yu, K., Cheng, D., Han, Y., Zhan, J., Ratanatawanate, C., & Jang, B. W.-L. (2006). Plasma application for more environmentally friendly catalyst preparation. Pure and Applied Chemistry, 78, 1227–1238.CrossRefGoogle Scholar
  23. 23.
    Li, Z.-H., Tian, S.-X., Wang, H.-T., & Tian, H.-B. (2004). Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical, 211, 149–153.CrossRefGoogle Scholar
  24. 24.
    Ratanatawanate, C., Macias, M., & Jang, B. W.-L. (2005). Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation. Industrial & Engineering Chemistry Research, 44, 9868–9874.CrossRefGoogle Scholar
  25. 25.
    Zhu, X., Huo, P.-P., Zhang, Y.-P., & Liu, C.-J. (2006). Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst. Industrial & Engineering Chemistry Research, 45, 8604–8609.CrossRefGoogle Scholar
  26. 26.
    Wang, J.-G., Liu, C.-J., Zhang, Y.-P., Yu, K.-L., Zhu, X.-L., & He, F. (2004). Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst. Catalysis Today, 89, 183–191.CrossRefGoogle Scholar
  27. 27.
    Zhang, Y.-P., Ma, P.-S., Zhu, X., Liu, C.-J., & Shen, Y. (2004). A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catalysis Communications, 5, 35–39.CrossRefGoogle Scholar
  28. 28.
    Guo, Y.-F., Ye, D.-Q., Chen, K.-F., He, J.-C., & Chen, W.-L. (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A: Chemical, 245, 93–100.CrossRefGoogle Scholar
  29. 29.
    Guo, Y.-F., Ye, D.-Q., Chen, K.-F., & He, J.-C. (2007). Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catalysis Today, 126, 328–337.CrossRefGoogle Scholar
  30. 30.
    Pribytkov, A., Baeva, G., Telegina, N., Tarasov, A., Stakheev, A. Y., Tel’nov, A., & Golubeva, V. (2006). Effect of electron irradiation on the catalytic properties of supported Pd catalysts. Kinetics and Catalysis, 47, 765–769.CrossRefGoogle Scholar
  31. 31.
    Wallis, A. E., Whitehead, J. C., & Zhang, K. (2007). The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 74, 111–116.CrossRefGoogle Scholar
  32. 32.
    Lu, B., Zhang, X., Yu, X., Feng, T., & Yao, S. (2006). Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 137, 633–637.CrossRefGoogle Scholar
  33. 33.
    Kim, H.-H., Ogata, A., & Futamura, S. (2006). Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34, 984–995.ADSCrossRefGoogle Scholar
  34. 34.
    Rousseau, A., Guaitella, O., Röpcke, J., Gatilova, L., & Tolmachev, Y. (2004). Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Applied Physics Letters, 85, 2199–2201.ADSCrossRefGoogle Scholar
  35. 35.
    Guo, Y. F., Ye, D. Q., Tian, Y. F., & Chen, K. F. (2006). Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 26, 237–249.Google Scholar
  36. 36.
    Van Durme, J., Dewulf, J., Demeestere, K., Leys, C., & Van Langenhove, H. (2009). Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity. Applied Catalysis B: Environmental, 87, 78–83.CrossRefGoogle Scholar
  37. 37.
    Ogata, A., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1999). Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 19, 383–394.CrossRefGoogle Scholar
  38. 38.
    Ogata, A., Ito, D., Mizuno, K., Kushiyama, S., & Yamamoto, T. (2001). Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 37, 959–964.CrossRefGoogle Scholar
  39. 39.
    Sultana, S., Vandenbroucke, A. M., Leys, C., De Geyter, N., & Morent, R. (2015). Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 5, 718–746.CrossRefGoogle Scholar
  40. 40.
    Dang, X. Q., Qin, C. H., Huang, J. Y., Teng, J. J., & Huang, X. M. (2016). Adsorbed benzene/toluene oxidation using plasma driven catalysis with gas circulation: Elimination of the byproducts. Journal of Industrial and Engineering Chemistry, 37, 366–371.CrossRefGoogle Scholar
  41. 41.
    Huang, J. Y., Dang, X. Q., Qin, C. H., Shu, Y., Wang, H. C., & Zhang, F. (2016). Toluene decomposition using adsorption combined with plasma-driven catalysis with gas circulation. Environmental Progress & Sustainable Energy, 35, 386–394.CrossRefGoogle Scholar
  42. 42.
    Qin, C. H., Dang, X. Q., Huang, J. Y., Teng, J. J., & Huang, X. M. (2016). Plasma-catalytic oxidation of adsorbed toluene on Ag-Mn/gamma-Al2O3: Comparison of gas flow-through and gas circulation treatment. Chemical Engineering Journal, 299, 85–92.CrossRefGoogle Scholar
  43. 43.
    Kuroki, T., Hirai, K., Kawabata, R., Okubo, M., & Yamamoto, T. (2010). Decomposition of adsorbed xylene on adsorbents using nonthermal plasma with gas circulation. IEEE Transactions on Industry Applications, 46, 672–679.CrossRefGoogle Scholar
  44. 44.
    Zhao, D.-Z., Li, X.-S., Shi, C., Fan, H.-Y., & Zhu, A.-M. (2011). Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science, 66, 3922–3929.CrossRefGoogle Scholar
  45. 45.
    Sano, T., Negishi, N., Sakai, E., & Matsuzawa, S. (2006). Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. Journal of Molecular Catalysis A: Chemical, 245, 235–241.CrossRefGoogle Scholar
  46. 46.
    Kang, M., Ko, Y.-R., Jeon, M.-K., Lee, S.-C., Choung, S.-J., Park, J.-Y., Kim, S., & Choi, S.-H. (2005). Characterization of Bi/TiO2 nanometer sized particle synthesized by solvothermal method and CH3CHO decomposition in a plasma-photocatalytic system. Journal of Photochemistry and Photobiology A: Chemistry, 173, 128–136.CrossRefGoogle Scholar
  47. 47.
    Kang, M., Kim, B.-J., Cho, S. M., Chung, C.-H., Kim, B.-W., Han, G. Y., & Yoon, K. J. (2002). Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. Journal of Molecular Catalysis A: Chemical, 180, 125–132.CrossRefGoogle Scholar
  48. 48.
    Lee, B.-Y., Park, S.-H., Lee, S.-C., Kang, M., & Choung, S.-J. (2004). Decomposition of benzene by using a discharge plasma–photocatalyst hybrid system. Catalysis Today, 93, 769–776.CrossRefGoogle Scholar
  49. 49.
    Kim, H.-H., Oh, S.-M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56, 213–220.CrossRefGoogle Scholar
  50. 50.
    Chavadej, S., Saktrakool, K., Rangsunvigit, P., Lobban, L. L., & Sreethawong, T. (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chemical Engineering Journal, 132, 345–353.CrossRefGoogle Scholar
  51. 51.
    Subrahmanyam, C., Magureanu, M., Laub, D., Renken, A., & Kiwi-Minsker, L. (2007). Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. The Journal of Physical Chemistry C, 111, 4315–4318.Google Scholar
  52. 52.
    Morent, R., Dewulf, J., Steenhaut, N., Leys, C., & Van Langenhove, H. (2006). Hybrid plasma-catalyst system for the removal of trichloroethylene in air. Journal of Advanced Oxidation Technologies, 9, 53–58.CrossRefGoogle Scholar
  53. 53.
    Leys, C., Neirynck, D., Morent, R., & Temmerman, E. (2006). DC-excited cold atmospheric pressure plasmas. Czechoslovak Journal of Physics, 56, B896–B902.CrossRefGoogle Scholar
  54. 54.
    Urashima, K., Kostov, K. G., Chang, J.-S., Okayasa, Y., Iwaizumi, T., Yoshimura, K., & Kato, T. (2001). Removal of C2F6 from a semiconductor process flue gas by a ferroelectric packed-bed barrier discharge reactor with an adsorber. IEEE Transactions on Industry Applications, 37, 1456–1463.CrossRefGoogle Scholar
  55. 55.
    Takaki, K., Urashima, K., & Chang, J.-S. (2004). Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type nonthermal plasma reactor. IEEE Transactions on Plasma Science, 32, 2175–2183.ADSCrossRefGoogle Scholar
  56. 56.
    Huang, H., Ye, D., & Guan, X. (2008). The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catalysis Today, 139, 43–48.CrossRefGoogle Scholar
  57. 57.
    Huang, H., & Ye, D. (2009). Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. Journal of Hazardous Materials, 171, 535–541.CrossRefGoogle Scholar
  58. 58.
    Hayashi, K., Yasui, H., Tanaka, M., Futamura, S., Kurita, S., & Aoyagi, K. (2009). Temperature dependence of toluene decomposition behavior in the discharge–catalyst hybrid reactor. IEEE Transactions on Industry Applications, 45, 1553–1558.CrossRefGoogle Scholar
  59. 59.
    Krawczyk, K., Ulejczyk, B., Song, H., Lamenta, A., Paluch, B., & Schmidt-Szałowski, K. (2009). Plasma-catalytic reactor for decomposition of chlorinated hydrocarbons. Plasma Chemistry and Plasma Processing, 29, 27–41.CrossRefGoogle Scholar
  60. 60.
    Demidiouk, V., & Chae, J. O. (2005). Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Transactions on Plasma Science, 33, 157–161.ADSCrossRefGoogle Scholar
  61. 61.
    Blin-Simiand, N., Tardiveau, P., Risacher, A., Jorand, F., & Pasquiers, S. (2005). Removal of 2-Heptanone by dielectric barrier discharges–the effect of a catalyst support. Plasma Processes and Polymers, 2, 256–262.CrossRefGoogle Scholar
  62. 62.
    Hensel, K., Katsura, S., & Mizuno, A. (2005). DC microdischarges inside porous ceramics. IEEE Transactions on Plasma Science, 33, 574–575.ADSCrossRefGoogle Scholar
  63. 63.
    Futamura, S., Einaga, H., Kabashima, H., & Hwan, L. Y. (2004). Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catalysis Today, 89, 89–95.CrossRefGoogle Scholar
  64. 64.
    Magureanu, M., Mandache, N., Parvulescu, V., Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74, 270–277.CrossRefGoogle Scholar
  65. 65.
    Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chemistry and Plasma Processing, 27, 13–22.CrossRefGoogle Scholar
  66. 66.
    Kirkpatrick, M. J., Finney, W. C., & Locke, B. R. (2004). Plasma–catalyst interactions in the treatment of volatile organic compounds and NOx with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes. Catalysis Today, 89, 117–126.CrossRefGoogle Scholar
  67. 67.
    Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2010). Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160, 677–682.CrossRefGoogle Scholar
  68. 68.
    Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chemical Engineering Journal, 134, 78–83.CrossRefGoogle Scholar
  69. 69.
    Roland, U., Holzer, F., & Kopinke, F.-D. (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73, 315–323.CrossRefGoogle Scholar
  70. 70.
    Song, Y.-H., Kim, S.-J., Choi, K.-I., & Yamamoto, T. (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55, 189–201.CrossRefGoogle Scholar
  71. 71.
    Ogata, A., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1999). Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors. IEEE Transactions on Industry Applications, 35, 1289–1295.CrossRefGoogle Scholar
  72. 72.
    Magureanu, M., Mandache, N. B., Eloy, P., Gaigneaux, E. M., & Parvulescu, V. I. (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 61, 12–20.CrossRefGoogle Scholar
  73. 73.
    Oda, T., & Yamaji, K. (2003). Dilute trichloroethylene decomposition in air by using non-thermal plasma-catalyst effect. Journal of Advanced Oxidation Technologies, 6, 93–99.CrossRefGoogle Scholar
  74. 74.
    Oh, S.-M., Kim, H.-H., Einaga, H., Ogata, A., Futamura, S., & Park, D.-W. (2006). Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 506, 418–422.ADSCrossRefGoogle Scholar
  75. 75.
    Oh, S.-M., Kim, H.-H., Ogata, A., Einaga, H., Futamura, S., & Park, D.-W. (2005). Effect of zeolite in surface discharge plasma on the decomposition of toluene. Catalysis Letters, 99, 101–104.CrossRefGoogle Scholar
  76. 76.
    Oda, T., Takahashi, T., & Kohzuma, S. (1998). Decomposition of dilute trichloroethylene by using non-thermal plasma processing-frequency and catalyst effect. In Industry applications conference, 1998. Thirty-Third IAS annual meeting. The 1998 IEEE. IEEE.Google Scholar
  77. 77.
    Wallis, A. E., Whitehead, J. C., & Zhang, K. (2007). The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 72, 282–288.CrossRefGoogle Scholar
  78. 78.
    Grossmannova, H., Neirynck, D., & Leys, C. (2006). Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czechoslovak Journal of Physics, 56, B1156–B1161.CrossRefGoogle Scholar
  79. 79.
    Da Costa, P., Marques, R., & Da Costa, S. (2008). Plasma catalytic oxidation of methane on alumina-supported noble metal catalysts. Applied Catalysis B: Environmental, 84, 214–222.CrossRefGoogle Scholar
  80. 80.
    Yamamoto, T., Mizuno, K., Tamori, I., Ogata, A., Nifuku, M., Michalska, M., & Prieto, G. (1996). Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 32, 100–105.CrossRefGoogle Scholar
  81. 81.
    Ogata, A., Einaga, H., Kabashima, H., Futamura, S., Kushiyama, S., & Kim, H.-H. (2003). Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Applied Catalysis B: Environmental, 46, 87–95.CrossRefGoogle Scholar
  82. 82.
    Vandenbroucke, A., Morent, R., De Geyter, N., Nguyen Dinh, M., Giraudon, J., Lamonier, J., & Leys, C. (2010). Plasma-catalytic decomposition of TCE. International Journal of Plasma Environmental Science and Technology, 4, 135–138.Google Scholar
  83. 83.
    Blackbeard, T., Demidyuk, V., Hill, S. L., & Whitehead, J. C. (2009). The effect of temperature on the plasma-catalytic destruction of propane and propene: A comparison with thermal catalysis. Plasma Chemistry and Plasma Processing, 29, 411–419.CrossRefGoogle Scholar
  84. 84.
    Chang, C.-L., Bai, H., & Lu, S.-J. (2005). Destruction of styrene in an air stream by packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25, 641–657.CrossRefGoogle Scholar
  85. 85.
    Demidyuk, V., & Whitehead, J. C. (2007). Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chemistry and Plasma Processing, 27, 85–94.CrossRefGoogle Scholar
  86. 86.
    Chang, C.-L., & Lin, T.-S. (2005). Elimination of carbon monoxide in the gas streams by dielectric barrier discharge systems with Mn catalyst. Plasma Chemistry and Plasma Processing, 25, 387–401.CrossRefGoogle Scholar
  87. 87.
    Jarrige, J., & Vervisch, P. (2009). Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B: Environmental, 90, 74–82.CrossRefGoogle Scholar
  88. 88.
    Zhu, T., Li, J., Liang, W., & Jin, Y. (2009). Synergistic effect of catalyst for oxidation removal of toluene. Journal of Hazardous Materials, 165, 1258–1260.CrossRefGoogle Scholar
  89. 89.
    Demidiouk, V., Moon, S.-I., Chae, J.-O., & Lee, D.-Y. (2003). Application of a plasma-catalytic system for decomposition of volatile organic compounds. Journal of the Korean Physical Society, 42, S966–S970.Google Scholar
  90. 90.
    Chen, H. L., Lee, H.-M., Cheng, L. C., Chang, M. B., Yu, S. J., & Li, S.-N. (2008). Influence of nonthermal plasma reactor type on and abatements. IEEE Transactions on Plasma Science, 36, 509–515.ADSCrossRefGoogle Scholar
  91. 91.
    Fan, X., Zhu, T., Wang, M., & Li, X. (2009). Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere, 75, 1301–1306.ADSCrossRefGoogle Scholar
  92. 92.
    Oda, T., Yamaji, K., & Takahashi, T. (2004). Decomposition of dilute trichloroethylene by nonthermal plasma processing-gas flow rate, catalyst, and ozone effect. IEEE Transactions on Industry Applications, 40, 430–436.CrossRefGoogle Scholar
  93. 93.
    Kim, H.-H., Kobara, H., Ogata, A., & Futamura, S. (2005). Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene. IEEE Transactions on Industry Applications, 41, 206–214.CrossRefGoogle Scholar
  94. 94.
    Besov, A. S., & Vorontsov, A. V. (2007). Acceleration of acetone destruction process under synergistic action of photocatalytic oxidation and barrier discharge. Plasma Chemistry and Plasma Processing, 27, 624–634.CrossRefGoogle Scholar
  95. 95.
    Hakoda, T., Matsumoto, K., Mizuno, A., & Hirota, K. (2009). Role of metals loaded on a TiO2 surface in the oxidation of xylene in air using an electron beam irradiation/catalytic process. Applied Catalysis A: General, 357, 244–249.CrossRefGoogle Scholar
  96. 96.
    Oda, T., Takahahshi, T., & Yamaji, K. (2002). Nonthermal plasma processing for dilute VOCs decomposition. IEEE Transactions on Industry Applications, 38, 873–878.CrossRefGoogle Scholar
  97. 97.
    Chang, C.-L., & Lin, T.-S. (2005). Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25, 227–243.CrossRefGoogle Scholar
  98. 98.
    Sun, R.-B., Xi, Z.-G., Chao, F.-H., Zhang, W., Zhang, H.-S., & Yang, D.-F. (2007). Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor. Atmospheric Environment, 41, 6853–6859.ADSCrossRefGoogle Scholar
  99. 99.
    Thevenet, F., Guaitella, O., Puzenat, E., Guillard, C., & Rousseau, A. (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84, 813–820.CrossRefGoogle Scholar
  100. 100.
    Kogoma, M., Miki, Y., Tanaka, K., & Takahashi, K. (2006). Highly efficient VOC decomposition using a complex system (OH radical, ozone-UV, and TiO2). Plasma Processes and Polymers, 3, 727–733.CrossRefGoogle Scholar
  101. 101.
    Guaitella, O., Thevenet, F., Puzenat, E., Guillard, C., & Rousseau, A. (2008). C2H2 oxidation by plasma/TiO2 combination: Influence of the porosity, and photocatalytic mechanisms under plasma exposure. Applied Catalysis B: Environmental, 80, 296–305.CrossRefGoogle Scholar
  102. 102.
    Huang, H., Ye, D., & Leung, D. Y. (2010). Removal of toluene using UV-irradiated and nonthermal plasma–driven photocatalyst system. Journal of Environmental Engineering, 136, 1231–1236.CrossRefGoogle Scholar
  103. 103.
    Falkenstein, Z., & Coogan, J. J. (1997). Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal of Physics D: Applied Physics, 30, 817–825.ADSCrossRefGoogle Scholar
  104. 104.
    Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere, 68, 1821–1829.ADSCrossRefGoogle Scholar
  105. 105.
    Ge, H., Zhang, L., Yan, L., Mi, D., & Zhu, Y. (2011). Parameter optimization of excited OH radical in multi-needle to plate negative DC corona discharge. Journal of Electrostatics, 69, 529–532.CrossRefGoogle Scholar
  106. 106.
    Sugasawa, M., Terasawa, T., & Futamura, S. (2010). Additive effect of water on the decomposition of VOCs in nonthermal plasma. IEEE Transactions on Industry Applications, 46, 1692–1698.CrossRefGoogle Scholar
  107. 107.
    Ogata, A., Shintani, N., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (2000). Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor. Plasma Chemistry and Plasma Processing, 20, 453–467.CrossRefGoogle Scholar
  108. 108.
    Cal, M. P., & Schluep, M. (2001). Destruction of benzene with non-thermal plasma in dielectric barrier discharge reactors. Environmental Progress, 20, 151–156.CrossRefGoogle Scholar
  109. 109.
    Futamura, S., Zhang, A., Einaga, H., & Kabashima, H. (2002). Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 72, 259–265.CrossRefGoogle Scholar
  110. 110.
    Xu, N., Fu, W., He, C., Cao, L., Liu, X., Zhao, J., & Pan, H. (2014). Benzene removal using non-thermal plasma with CuO/AC catalyst: Reaction condition optimization and decomposition mechanism. Plasma Chemistry and Plasma Processing, 34, 1387–1402.CrossRefGoogle Scholar
  111. 111.
    Fan, X., Zhu, T., Wan, Y., & Yan, X. (2010). Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air. Journal of Hazardous Materials, 180, 616–621.CrossRefGoogle Scholar
  112. 112.
    Futamura, S., Zhang, A., & Yamamoto, T. (1997). The dependence of nonthermal plasma behavior of VOCs on their chemical structures. Journal of Electrostatics, 42, 51–62.CrossRefGoogle Scholar
  113. 113.
    Krawczyk, K., & Ulejczyk, B. (2004). Influence of water vapor on CCl4 and CHCl3 conversion in gliding discharge. Plasma Chemistry and Plasma Processing, 24, 155–167.CrossRefGoogle Scholar
  114. 114.
    Futamura, S., & Sugasawa, M. (2008). Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Transactions on Industry Applications, 44, 40–45.CrossRefGoogle Scholar
  115. 115.
    Abdelaziz, A. A., Seto, T., Abdel-Salam, M., & Otani, Y. (2013). Influence of nitrogen excited species on the destruction of naphthalene in nitrogen and air using surface dielectric barrier discharge. Journal of Hazardous Materials, 246, 26–33.CrossRefGoogle Scholar
  116. 116.
    Zhang, X., Zhu, J., Li, X., Liu, Z., Ren, X., & Yan, K. (2011). Characteristics of styrene removal with an AC/DC streamer corona plasma system. IEEE Transactions on Plasma Science, 39, 1482–1488.ADSCrossRefGoogle Scholar
  117. 117.
    Zhang, X., Feng, W., Yu, Z., Li, S., Zhu, J., & Yan, K. (2013). Comparison of styrene removal in air by positive and negative DC corona discharges. International journal of Environmental Science and Technology, 10, 1377–1382.CrossRefGoogle Scholar
  118. 118.
    Futamura, S., Einaga, H., & Zhang, A. (2001). Comparison of reactor performance in the nonthermal plasma chemical processing of hazardous air pollutants. IEEE Transactions on Industry Applications, 37, 978–985.CrossRefGoogle Scholar
  119. 119.
    Tonkyn, R., Barlow, S., & Orlando, T. (1996). Destruction of carbon tetrachloride in a dielectric barrier/packed-bed corona reactor. Journal of Applied Physics, 80, 4877–4886.ADSCrossRefGoogle Scholar
  120. 120.
    Korzekwa, R., Grothaus, M., Hutcherson, R., Roush, R., & Brown, R. (1998). Destruction of hazardous air pollutants using a fast rise time pulsed corona reactor. Review of Scientific Instruments, 69, 1886–1892.ADSCrossRefGoogle Scholar
  121. 121.
    Agnihotri, S., Cal, M. P., & Prien, J. (2004). Destruction of 1, 1, 1-trichloroethane using dielectric barrier discharge nonthermal plasma. Journal of Environmental Engineering, 130, 349–355.CrossRefGoogle Scholar
  122. 122.
    Karuppiah, J., Reddy, E. L., Reddy, P. M., Ramaraju, B., Karvembu, R., & Subrahmanyam, C. (2012). Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 237–238, 283–289.CrossRefGoogle Scholar
  123. 123.
    Wan, Y., Fan, X., & Zhu, T. (2011). Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chemical Engineering Journal, 171, 314–319.CrossRefGoogle Scholar
  124. 124.
    Mfopara, A., Kirkpatrick, M. J., & Odic, E. (2009). Dilute methane treatment by atmospheric pressure dielectric barrier discharge: Effects of water vapor. Plasma Chemistry and Plasma Processing, 29, 91–102.CrossRefGoogle Scholar
  125. 125.
    Baylet, A., Marécot, P., Duprez, D., Jeandel, X., Lombaert, K., & Tatibouët, J. (2012). Synergetic effect of plasma/catalysis hybrid system for CH4 removal. Applied Catalysis B: Environmental, 113, 31–36.CrossRefGoogle Scholar
  126. 126.
    Karuppiah, J., Karvembu, R., & Subrahmanyam, C. (2012). The catalytic effect of MnOx and CoOx on the decomposition of nitrobenzene in a non-thermal plasma reactor. Chemical Engineering Journal, 180, 39–45.CrossRefGoogle Scholar
  127. 127.
    Dinh, M. N., Giraudon, J.-M., Lamonier, J.-F., Vandenbroucke, A., De Geyter, N., Leys, C., & Morent, R. (2014). Plasma-catalysis of low TCE concentration in air using LaMnO3+δ as catalyst. Applied Catalysis B: Environmental, 147, 904–911.CrossRefGoogle Scholar
  128. 128.
    Lu, S. Y., Sun, X. M., Li, X. D., Yan, J. H., & Du, C. M. (2012). Decomposition of toluene in a rotating glidarc discharge reactor. IEEE Transactions on Plasma Science, 40, 2151–2156.ADSCrossRefGoogle Scholar
  129. 129.
    Trushkin, A., Grushin, M., Kochetov, I., Trushkin, N., & Akishev, Y. S. (2013). Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Physics Reports, 39, 167–182.ADSCrossRefGoogle Scholar
  130. 130.
    Lee, H. M., & Chang, M. B. (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 23, 541–558.CrossRefGoogle Scholar
  131. 131.
    Zhu, Y.-P., Liu, Y.-L., Renb, T.-Z., & Yuan, Z.-Y. (2014). Plasma-catalytic removal of a low concentration of acetone in humid conditions. RSC Advances, 4, 37796–37805.CrossRefGoogle Scholar
  132. 132.
    Kuroki, T., Oishi, T., Yamamoto, T., & Okubo, M. (2013). Bromomethane decomposition using a pulsed dielectric barrier discharge. IEEE Transactions on Industry Applications, 49, 293–297.CrossRefGoogle Scholar
  133. 133.
    Assadi, A. A., Bouzaza, A., Vallet, C., & Wolbert, D. (2014). Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination–synergetic effect and byproducts identification. Chemical Engineering Journal, 254, 124–132.CrossRefGoogle Scholar
  134. 134.
    Aubry, O., & Cormier, J.-M. (2009). Improvement of the diluted propane efficiency treatment using a non-thermal plasma. Plasma Chemistry and Plasma Processing, 29, 13–25.CrossRefGoogle Scholar
  135. 135.
    Yamashita, R., Takahashi, T., & Oda, T. (1996). Humidify effect on non-thermal plasma processing for VOCs decomposition. In Industry applications conference, 1996. Thirty-First IAS annual meeting, IAS’96., conference record of the 1996 IEEE. IEEE.Google Scholar
  136. 136.
    Du, C. M., Yan, J. H., & Cheron, B. (2007). Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Science and Technology, 16, 791–797.ADSCrossRefGoogle Scholar
  137. 137.
    Wang, J. T., Cao, X., Zhang, R. X., Gong, T., Hou, H. Q., Chen, S. P., & Zhang, R. N. (2016). Effect of water vapor on toluene removal in catalysis-DBD plasma reactors. Plasma Science and Technology, 18, 370–375.ADSCrossRefGoogle Scholar
  138. 138.
    Nakagawa, Y., Fujisawa, H., Ono, R., & Oda, T. (2010). Dilute trichloroethylene decomposition by using high pressure non-thermal plasma: humidity effects. In Industry Applications Society Annual Meeting (IAS), 2010 IEEE. IEEE.Google Scholar
  139. 139.
    Zhu, T., Li, J., Jin, Y.-q., Liang, Y., & Ma, G. (2008). Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect. International Journal of Environmental Science & Technology, 5, 375–384.CrossRefGoogle Scholar
  140. 140.
    Ogata, A., Ito, D., Mizuno, K., Kushiyama, S., Gal, A., & Yamamoto, T. (2002). Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A: General, 236, 9–15.CrossRefGoogle Scholar
  141. 141.
    Einaga, H., Ibusuki, T., & Futamura, S. (2001). Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Transactions on Industry Applications, 37, 1476–1482.CrossRefGoogle Scholar
  142. 142.
    Byeon, J. H., Park, J. H., Jo, Y. S., Yoon, K. Y., & Hwang, J. (2010). Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 175, 417–422.CrossRefGoogle Scholar
  143. 143.
    Delagrange, S., Pinard, L., & Tatibouet, J.-M. (2006). Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 68, 92–98.CrossRefGoogle Scholar
  144. 144.
    Blin-Simiand, N., Jorand, F., Magne, L., Pasquiers, S., Postel, C., & Vacher, J.-R. (2008). Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 28, 429–466.CrossRefGoogle Scholar
  145. 145.
    Chiper, A. S., Blin-Simiand, N., Heninger, M., Mestdagh, H., Boissel, P., Jorand, F., Lemaire, J., Leprovost, J., Pasquiers, S., & Popa, G. (2009). Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. The Journal of Physical Chemistry A, 114, 397–407.ADSCrossRefGoogle Scholar
  146. 146.
    Rosocha, L. A., & Korzekwa, R. A. (1999). Advanced oxidation and reduction processes in the gas phase using non-thermal plasmas. Journal of Advanced Oxidation Technologies, 4, 247–264.Google Scholar
  147. 147.
    Vertriest, R., Morent, R., Dewulf, J., Leys, C., & Van Langenhove, H. (2003). Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air. Plasma Sources Science and Technology, 12, 412–416.ADSCrossRefGoogle Scholar
  148. 148.
    Oh, J. H., Mok, Y. S., Lee, S. B., & Chang, M. S. (2009). Destruction of HCFC-22 and distribution of byproducts in a nonthermal plasma reactor packed with dielectric pellets. Journal of the Korean Physical Society, 54, 1539–1546.ADSCrossRefGoogle Scholar
  149. 149.
    Gandhi, M. S., & Mok, Y. (2012). Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. Journal of Environmental Sciences, 24, 1234–1239.CrossRefGoogle Scholar
  150. 150.
    Mok, Y., Demidyuk, V., & Whitehead, J. (2008). Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor. The Journal of Physical Chemistry A, 112, 6586–6591.ADSCrossRefGoogle Scholar
  151. 151.
    Kang, H.-C. (2002). Decomposition of chlorofluorocarbon by non-thermal plasma. Journal of Industrial and Engineering Chemistry, 8, 488–492.Google Scholar
  152. 152.
    Futamura, S., & Yamamoto, T. (1997). Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE Transactions on Industry Applications, 33, 447–453.CrossRefGoogle Scholar
  153. 153.
    Vandenbroucke, A., Aerts, R., Van Gaens, W., De Geyter, N., Leys, C., Morent, R., & Bogaerts, A. (2015). Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge. Plasma Chemistry and Plasma Processing, 35, 217–230.CrossRefGoogle Scholar
  154. 154.
    Hsiao, M., Merritt, B., Penetrante, B., Vogtlin, G., & Wallman, P. (1995). Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. Journal of Applied Physics, 78, 3451–3456.ADSCrossRefGoogle Scholar
  155. 155.
    Blin-Simiand, N., Pasquiers, S., Jorand, F., Postel, C., & Vacher, J. R. (2009). Removal of formaldehyde in nitrogen and in dry air by a DBD: Importance of temperature and role of nitrogen metastable states. Journal of Physics D: Applied Physics, 42 122003.ADSCrossRefGoogle Scholar
  156. 156.
    Storch, D. G., & Kushner, M. J. (1993). Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. Journal of Applied Physics, 73, 51–55.ADSCrossRefGoogle Scholar
  157. 157.
    Hill, S. L., Kim, H.-H., Futamura, S., & Whitehead, J. C. (2008). The destruction of atmospheric pressure propane and propene using a surface discharge plasma reactor. The Journal of Physical Chemistry A, 112, 3953–3958.ADSCrossRefGoogle Scholar
  158. 158.
    Demidyuk, V., Hill, S. L., & Whitehead, J. C. (2008). Enhancement of the destruction of propane in a low-temperature plasma by the addition of unsaturated hydrocarbons: Experiment and modeling. The Journal of Physical Chemistry A, 112, 7862–7867.ADSCrossRefGoogle Scholar
  159. 159.
    Li, J., Bai, S.-P., Shi, X.-C., Han, S.-L., Zhu, X.-M., Chen, W.-C., & Pu, Y.-K. (2008). Effects of temperature on benzene oxidation in dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 28, 39–48.CrossRefGoogle Scholar
  160. 160.
    Penetrante, B., Hsiao, M., Bardsley, J., Merritt, B., Vogtlin, G., Kuthi, A., Burkhart, C., & Bayless, J. (1997). Decomposition of methylene chloride by electron beam and pulsed corona processing. Physics Letters A, 235, 76–82.ADSCrossRefGoogle Scholar
  161. 161.
    Kim, D.-H., Mok, Y., & Lee, S. (2011). Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor. Thin Solid Films, 519, 6960–6963.ADSCrossRefGoogle Scholar
  162. 162.
    Harling, A. M., Kim, H.-H., Futamura, S., & Whitehead, J. C. (2007). Temperature dependence of plasma catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene. The Journal of Physical Chemistry C, 111, 5090–5095.CrossRefGoogle Scholar
  163. 163.
    Penetrante, B., Hsiao, M., Bardsley, J., Merritt, B., Vogtlin, G., Wallman, P., Kuthi, A., Bukhart, C., & Bayless, J. (1996). Electron beam and pulsed corona processing of volatile organic compounds in gas streams. Pure and Applied Chemistry, 68, 1083–1087.CrossRefGoogle Scholar
  164. 164.
    Huang, L., Nakajyo, K., Hari, T., Ozawa, S., & Matsuda, H. (2001). Decomposition of carbon tetrachloride by a pulsed corona reactor incorporated with in situ absorption. Industrial & Engineering Chemistry Research, 40, 5481–5486.CrossRefGoogle Scholar
  165. 165.
    Harling, A. M., Demidyuk, V., Fischer, S. J., & Whitehead, J. C. (2008). Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration. Applied Catalysis B: Environmental, 82, 180–189.CrossRefGoogle Scholar
  166. 166.
    Lee, H. M., & Chang, M. B. (2001). Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 21, 329–343.CrossRefGoogle Scholar
  167. 167.
    Ogata, A., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1998). Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chemistry and Plasma Processing, 18, 363–373.CrossRefGoogle Scholar
  168. 168.
    Mok, Y. S., Lee, S. B., Oh, J. H., Ra, K. S., & Sung, B. H. (2008). Abatement of Trichloromethane by using nonthermal plasma reactors. Plasma Chemistry and Plasma Processing, 28, 663–676.CrossRefGoogle Scholar
  169. 169.
    Pringle, K. J., Whitehead, J. C., Wilman, J. J., & Wu, J. (2004). The chemistry of methane remediation by a non-thermal atmospheric pressure plasma. Plasma Chemistry and Plasma Processing, 24, 421–434.CrossRefGoogle Scholar
  170. 170.
    Zhang, H., Li, K., Sun, T., Jia, J., Lou, Z., & Feng, L. (2014). Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3. Chemical Engineering Journal, 241, 92–102.CrossRefGoogle Scholar
  171. 171.
    Ding, H. X., Zhu, A. M., Lu, F. G., Xu, Y., Zhang, J., & Yang, X. F. (2006). Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics D: Applied Physics, 39, 3603–3608.ADSCrossRefGoogle Scholar
  172. 172.
    Chavadej, S., Kiatubolpaiboon, W., Rangsunvigit, P., & Sreethawong, T. (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A: Chemical, 263, 128–136.CrossRefGoogle Scholar
  173. 173.
    Shi, Y., Wang, X., Li, W., Tan, T.-e., & Ruan, J.-j. (2006). Evaluation of multiple corona reactor modes and the application in odor removal. Plasma Chemistry and Plasma Processing, 26, 187–196.CrossRefGoogle Scholar
  174. 174.
    Harling, A. M., Glover, D. J., Whitehead, J. C., & Zhang, K. (2008). Industrial scale destruction of environmental pollutants using a novel plasma reactor. Industrial & Engineering Chemistry Research, 47, 5856–5860.CrossRefGoogle Scholar
  175. 175.
    Hubner, M., Guaitella, O., Rousseau, A., & Ropcke, J. (2013). A spectroscopic study of ethylene destruction and by-product generation using a three-stage atmospheric packed-bed plasma reactor. Journal of Applied Physics, 114, 033301.ADSCrossRefGoogle Scholar
  176. 176.
    Li, D., Yakushiji, D., Kanazawa, S., Ohkubo, T., & Nomoto, Y. (2002). Decomposition of toluene by streamer corona discharge with catalyst. Journal of Electrostatics, 55, 311–319.CrossRefGoogle Scholar
  177. 177.
    Malik, M. A., & Xuanzhen, J. (2000). Catalyst assisted destruction of trichloro ethylene and toluene in corona discharges. Journal of Environmental Sciences, 12, 7–11.Google Scholar
  178. 178.
    Guo, Y., Liao, X., He, J., Ou, W., & Ye, D. (2010). Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catalysis Today, 153, 176–183.CrossRefGoogle Scholar
  179. 179.
    Liao, X.-B., Guo, Y.-F., He, J.-H., Ou, W.-J., & Ye, D.-Q. (2010). Hydroxyl radicals formation in dielectric barrier discharge during decomposition of toluene. Plasma Chemistry and Plasma Processing, 30, 841–853.CrossRefGoogle Scholar
  180. 180.
    Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169.CrossRefGoogle Scholar
  181. 181.
    Huang, H. B., Ye, D. Q., & Leung, D. Y. C. (2011). Abatement of toluene in the plasma-driven catalysis: Mechanism and reaction kinetics. IEEE Transactions on Plasma Science, 39, 877–882.ADSCrossRefGoogle Scholar
  182. 182.
    Huang, H., Ye, D., & Leung, D. Y. (2011). Plasma-driven catalysis process for toluene abatement: Effect of water vapor. IEEE Transactions on Plasma Science, 39, 576–580.ADSCrossRefGoogle Scholar
  183. 183.
    Wu, J., Huang, Y., Xia, Q., & Li, Z. (2013). Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts. Plasma Chemistry and Plasma Processing, 33, 1073–1082.CrossRefGoogle Scholar
  184. 184.
    Qin, C. H., Huang, X. M., Dang, X. Q., Huang, J. Y., Teng, J. J., & Kang, Z. L. (2016). Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/gamma-Al2O3. Chemosphere, 162, 125–130.ADSCrossRefGoogle Scholar
  185. 185.
    Xu, W. C., Wang, N., Chen, Y. D., Chen, J. D., Xu, X. X., Yu, L., Chen, L. M., Wu, J. L., Fu, M. L., Zhu, A. M., & Ye, D. Q. (2016). In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded gamma-Al2O3. Catalysis Communications, 84, 61–66.ADSCrossRefGoogle Scholar
  186. 186.
    Xu, X. X., Wang, P. T., Xu, W. C., Wu, J. L., Chen, L. M., Fu, M. L., & Ye, D. Q. (2016). Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system. Chemical Engineering Journal, 283, 276–284.CrossRefGoogle Scholar
  187. 187.
    Huang, H., Ye, D., Leung, D. Y., Feng, F., & Guan, X. (2011). Byproducts and pathways of toluene destruction via plasma-catalysis. Journal of Molecular Catalysis A: Chemical, 336, 87–93.CrossRefGoogle Scholar
  188. 188.
    Ban, J.-Y., Son, Y.-H., Kang, M., & Choung, S.-J. (2006). Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma–photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS). Applied Surface Science, 253, 535–542.ADSCrossRefGoogle Scholar
  189. 189.
    Kim, H. H., Ogata, A., & Futamura, S. (2005). Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. Journal of Physics D: Applied Physics, 38, 1292–1300.ADSCrossRefGoogle Scholar
  190. 190.
    Liang, W.-J., Ma, L., Liu, H., & Li, J. (2013). Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere, 92, 1390–1395.ADSCrossRefGoogle Scholar
  191. 191.
    Zhu, T., Wan, Y., Li, H., Chen, S., & Fang, Y. (2011). VOCs decomposition via modified ferroelectric packed bed dielectric barrier discharge plasma. IEEE Transactions on Plasma Science, 39, 1695–1700.ADSCrossRefGoogle Scholar
  192. 192.
    Huang, R., Lu, M. J., Wang, P. T., Chen, Y. D., Wu, J. L., Fu, M. L., Chen, L. M., & Ye, D. Q. (2015). Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal. RSC Advances, 5, 72113–72120.CrossRefGoogle Scholar
  193. 193.
    Lu, M. J., Huang, R., Wu, J. L., Fu, M. L., Chen, L. M., & Ye, D. Q. (2015). On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catalysis Today, 242, 274–286.CrossRefGoogle Scholar
  194. 194.
    Teramoto, Y., Kosuge, K., Sugasawa, M., Kim, H. H., Ogata, A., & Negishi, N. (2015). Zirconium/cerium oxide solid solutions with addition of SiO2 as ozone-assisted catalysts for toluene oxidation. Catalysis Communications, 61, 112–116.CrossRefGoogle Scholar
  195. 195.
    Wang, W. Z., Wang, H. L., Zhu, T. L., & Fan, X. (2015). Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of Hazardous Materials, 292, 70–78.CrossRefGoogle Scholar
  196. 196.
    Ye, Z. L., Han, Q. Y., Jiang, Y. F., Zhang, S. D., Shu, L., & Zhang, R. X. (2015). Synergetic effect between plasma and UV for toluene conversion in integrated combined plasma photolysis reactor with KrCl/KrBr/XeCl/Xe-2 Excilamp. Canadian Journal of Chemical Engineering, 93, 1168–1175.CrossRefGoogle Scholar
  197. 197.
    Zabihi, M., Khorasheh, F., & Shayegan, J. (2015). Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Advances, 5, 5107–5122.CrossRefGoogle Scholar
  198. 198.
    Chen, J., Xie, Z. M., Tang, J. H., Zhou, J., Lu, X. T., & Zhao, H. T. (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284, 166–173.CrossRefGoogle Scholar
  199. 199.
    Giroir-Fendler, A., Alves-Fortunato, M., Richard, M., Wang, C., Diaz, J. A., Gil, S., Zhang, C. H., Can, F., Bion, N., & Guo, Y. L. (2016). Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 180, 29–37.CrossRefGoogle Scholar
  200. 200.
    Rodrigues, A., Tatibouet, J. M., & Fourre, E. (2016). Operando DRIFT spectroscopy characterization of intermediate species on catalysts surface in VOC removal from air by non-thermal plasma assisted catalysis. Plasma Chemistry and Plasma Processing, 36, 901–915.CrossRefGoogle Scholar
  201. 201.
    Kim, H.-H., Lee, Y.-H., Ogata, A., & Futamura, S. (2003). Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications, 4, 347–351.CrossRefGoogle Scholar
  202. 202.
    Kim, H., Lee, Y., Ogata, A., & Futamura, S. (2003). Decomposition of gas-phase benzene using hybrid systems of non-thermal plasma and catalysts. In Plasma science, 2003. ICOPS 2003. IEEE conference record-abstracts. The 30th international conference on. 2003. IEEE.Google Scholar
  203. 203.
    Kim, H.-H., Oh, S.-M., Ogata, A., & Futamura, S. (2004). Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: Influence of electrode configuration and Ag-loading amount. Catalysis Letters, 96, 189–194.CrossRefGoogle Scholar
  204. 204.
    Higashi, M., Uchida, S., Suzuki, N., & Fujii, K.-I. (1992). Soot elimination and NOx and SOx reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics. IEEE Transactions on Plasma Science, 20, 1–12.ADSCrossRefGoogle Scholar
  205. 205.
    Fan, H. Y., Shi, C., Li, X. S., Zhao, D. Z., Xu, Y., & Zhu, A. M. (2009). High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D: Applied Physics, 42, 225105.ADSCrossRefGoogle Scholar
  206. 206.
    Jiang, N., Hu, J., Li, J., Shang, K. F., Lu, N., & Wu, Y. (2016). Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184, 355–363.CrossRefGoogle Scholar
  207. 207.
    Park, D.-W., Yoon, S.-H., Kim, G.-J., & Sekiguchi, H. (2002). The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. Journal of Industrial and Engineering Chemistry, 8, 393–398.Google Scholar
  208. 208.
    Hu, J., Jiang, N., Li, J., Shang, K. F., Lu, N., & Wu, Y. (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2-TiO2/zeolite catalyst. Chemical Engineering Journal, 293, 216–224.CrossRefGoogle Scholar
  209. 209.
    Ye, Z. L., Shen, Y., Xi, R. Z., & Hou, H. Q. (2007). Destruction of benzene in an air stream by the outer combined plasma photolysis method. Journal of Physics D: Applied Physics, 41, 025201.CrossRefGoogle Scholar
  210. 210.
    Ge, H., Hu, D. X., Li, X. G., Tian, Y., Chen, Z. B., & Zhu, Y. M. (2015). Removal of low-concentration benzene in indoor air with plasma-MnO2 catalysis system. Journal of Electrostatics, 76, 216–221.CrossRefGoogle Scholar
  211. 211.
    He, C., Cao, L., Liu, X., Fu, W., & Zhao, J. (2015). Catalytic behavior and synergistic effect of nonthermal plasma and CuO/AC catalyst for benzene destruction. International journal of Environmental Science and Technology, 12, 3531–3540.CrossRefGoogle Scholar
  212. 212.
    Liu, Y., Li, X. S., Liu, J. L., Wu, J. L., Ye, D. Q., & Zhu, A. M. (2016). Cycled storage-discharge (CSD) plasma catalytic removal of benzene over AgMn/HZSM-5 using air as discharge gas. Catalysis Science & Technology, 6, 3788–3796.CrossRefGoogle Scholar
  213. 213.
    Ma, T. P., Jiang, H. D., Liu, J. Q., & Zhong, F. C. (2016). Decomposition of benzene using a pulse-modulated DBD plasma. Plasma Chemistry and Plasma Processing, 36, 1533–1543.CrossRefGoogle Scholar
  214. 214.
    Pangilinan, C. D. C., Kurniawan, W., Salim, C., & Hinode, H. (2016). Effect of Ag/TiO2 catalyst preparation on gas-phase benzene decomposition using non-thermal plasma driven catalysis under oxygen plasma. Reaction Kinetics, Mechanisms and Catalysis, 117, 103–118.CrossRefGoogle Scholar
  215. 215.
    Han, S., Oda, T., & Ono, R. (2005). Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process. IEEE Transactions on Industry Applications, 41, 1343–1349.CrossRefGoogle Scholar
  216. 216.
    Oda, T., Takahashi, T., & Yamaji, K. (2004). TCE decomposition by the nonthermal plasma process concerning ozone effect. IEEE Transactions on Industry Applications, 40, 1249–1256.CrossRefGoogle Scholar
  217. 217.
    Magureanu, M., Mandache, N. B., Hu, J., Richards, R., Florea, M., & Parvulescu, V. I. (2007). Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 76, 275–281.CrossRefGoogle Scholar
  218. 218.
    Vandenbroucke, A. M., Dinh, M. T. N., Nuns, N., Giraudon, J. M., De Geyter, N., Leys, C., Lamonier, J. F., & Morent, R. (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283, 668–675.CrossRefGoogle Scholar
  219. 219.
    Dinh, M. T. N., Giraudon, T. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2016). Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 314, 88–94.CrossRefGoogle Scholar
  220. 220.
    Dinh, M. T. N., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce-Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65–72.CrossRefGoogle Scholar
  221. 221.
    Vandenbroucke, A., Mora, M., Jiménez-Sanchidrián, C., Romero-Salguero, F., De Geyter, N., Leys, C., & Morent, R. (2014). TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B: Environmental, 156, 94–100.CrossRefGoogle Scholar
  222. 222.
    Whitehead, J. C. (2016). Plasma–catalysis: The known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 49, 243001.ADSCrossRefGoogle Scholar
  223. 223.
    Oda, T., Yamaji, K., & Takahashi, T. (2001). Decomposition of dilute trichloroethylene by nonthermal plasma processing-catalyst and ozone effect. In Industry applications conference, 2001. Thirty-Sixth IAS annual meeting. Conference record of the 2001 IEEE.Google Scholar
  224. 224.
    Vandenbroucke, A., Morent, R., De Geyter, N., & Leys, C. (2011). Decomposition of trichloroethylene with plasma-catalysis: A review. Journal of Advanced Oxidation Technologies, 14, 165–173.CrossRefGoogle Scholar
  225. 225.
    Lee, H., Lee, D. H., Song, Y. H., Choi, W. C., Park, Y. K., & Kim, D. H. (2015). Synergistic effect of non-thermal plasma-catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical Engineering Journal, 259, 761–770.CrossRefGoogle Scholar
  226. 226.
    Marques, R., Da Costa, S., & Da Costa, P. (2008). Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition. Applied Catalysis B: Environmental, 82, 50–57.CrossRefGoogle Scholar
  227. 227.
    Abd Allah, Z., & Whitehead, J. C. (2015). Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catalysis Today, 256, 76–79.CrossRefGoogle Scholar
  228. 228.
    Huu, T. P., Gil, S., Da Costa, P., Giroir-Fendler, A., & Khacef, A. (2015). Plasma-catalytic hybrid reactor: Application to methane removal. Catalysis Today, 257, 86–92.CrossRefGoogle Scholar
  229. 229.
    Lee, H., Lim, T. H., & Kim, D. H. (2015). Complementary effect of plasma-catalysis hybrid system on methane complete oxidation over non-PGM catalysts. Catalysis Communications, 69, 223–227.CrossRefGoogle Scholar
  230. 230.
    Trinh, Q. H., Lee, S. B., & Mok, Y. S. (2015). Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite. Journal of Hazardous Materials, 285, 525–534.CrossRefGoogle Scholar
  231. 231.
    Trinh, Q. H., & Mok, Y. S. (2015). Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catalysis Today, 256, 170–177.CrossRefGoogle Scholar
  232. 232.
    Hoard, J., Wallington, T. J., Bretz, R. L., Malkin, A., Dorai, R., & Kushner, M. J. (2003). Importance of O (3P) atoms and OH radicals in hydrocarbon oxidation during the nonthermal plasma treatment of diesel exhaust inferred using relative-rate methods. International Journal of Chemical Kinetics, 35, 231–238.CrossRefGoogle Scholar
  233. 233.
    Rousseau, A., Guaitella, O., Gatilova, L., Thevenet, F., Guillard, C., Ropcke, J., & Stancu, G. (2005). Photocatalyst activation in a pulsed low pressure discharge. Applied Physics Letters, 87, 221501–221900.ADSCrossRefGoogle Scholar
  234. 234.
    Gatica, J. M., Garcia-Cabeza, A. L., Yeste, M. P., Marin-Barrios, R., Gonzalez-Leal, J. M., Blanco, G., Cifredo, G. A., Guerra, F. M., & Vidal, H. (2016). Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch-Sosnovsky oxidation of cyclohexene. Chemical Engineering Journal, 290, 174–184.CrossRefGoogle Scholar
  235. 235.
    Kim, J., Han, B., Kim, Y., Lee, J.-H., Park, C.-R., Kim, J.-C., Kim, J.-C., & Kim, K.-J. (2004). Removal of VOCs by hybrid electron beam reactor with catalyst bed. Radiation Physics and Chemistry, 71, 429–432.ADSCrossRefGoogle Scholar
  236. 236.
    Kim, K.-J., Kim, J.-C., Kim, J., & Sunwoo, Y. (2005). Development of hybrid technology using E-beam and catalyst for aromatic VOCs control. Radiation Physics and Chemistry, 73, 85–90.ADSCrossRefGoogle Scholar
  237. 237.
    Zhang, H. B., Li, K., Sun, T. H., Jia, J. P., Lou, Z. Y., Yao, S. A., & Wang, G. (2015). The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the by-products and intermediates. Research on Chemical Intermediates, 41, 175–189.CrossRefGoogle Scholar
  238. 238.
    Ye, Z., Wang, C., Shao, Z., Ye, Q., He, Y., & Shi, Y. (2012). A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene. Journal of Hazardous Materials, 241, 216–223.CrossRefGoogle Scholar
  239. 239.
    Hakoda, T., Matsumoto, K., Shimada, A., Narita, T., Kojima, T., & Hirota, K. (2008). Application of ozone decomposition catalysts to electron-beam irradiated xylene/air mixtures for enhancing carbon dioxide production. Radiation Physics and Chemistry, 77, 585–590.ADSCrossRefGoogle Scholar
  240. 240.
    Hakoda, T., Matsumoto, K., Mizuno, A., Narita, T., Kojima, T., & Hirota, K. (2008). Oxidation process of xylene in air using under electron beam irradiation. IEEE Transactions on Industry Applications, 44, 1950–1956.CrossRefGoogle Scholar
  241. 241.
    Hakoda, T., Matsumoto, K., Mizuno, A., & Hirota, K. (2008). Oxidation of xylene and its irradiation byproducts using an electron-beam irradiating a γ-Al2O3 bed. Journal of Physics D: Applied Physics, 41, 155202.ADSCrossRefGoogle Scholar
  242. 242.
    Francke, K.-P., Miessner, H., & Rudolph, R. (2000). Cleaning of air streams from organic pollutants by plasma–catalytic oxidation. Plasma Chemistry and Plasma Processing, 20, 393–403.CrossRefGoogle Scholar
  243. 243.
    Wei, B. L., Chen, Y. P., Ye, M. J., Shao, Z. H., He, Y., & Shi, Y. (2015). Enhanced degradation of gaseous xylene using surface acidized TiO2 catalyst with non-thermal plasmas. Plasma Chemistry and Plasma Processing, 35, 173–186.CrossRefGoogle Scholar
  244. 244.
    Wang, L., Zhang, C. B., He, H., Liu, F. D., & Wang, C. X. (2016). Effect of doping metals on OMS-2/gamma-Al2O3 catalysts for plasma-catalytic removal of o-xylene. Journal of Physical Chemistry C, 120, 6136–6144.CrossRefGoogle Scholar
  245. 245.
    Norsic, C., Tatibouët, J.-M., Batiot-Dupeyrat, C., & Fourré, E. (2016). Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3. Chemical Engineering Journal, 304, 563–572.CrossRefGoogle Scholar
  246. 246.
    Zhu, X. B., Liu, S. Y., Cai, Y. X., Gao, X., Zhou, J. S., Zheng, C. H., & Tu, X. (2016). Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Applied Catalysis B: Environmental, 183, 124–132.ADSCrossRefGoogle Scholar
  247. 247.
    Lyulyukin, M. N., Besov, A. S., & Vorontsov, A. V. (2016). Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts. Applied Catalysis B: Environmental, 183, 18–27.CrossRefGoogle Scholar
  248. 248.
    Li, Y., Fan, Z., Shi, J., Liu, Z., Zhou, J., & Shangguan, W. (2014). Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis. Plasma Chemistry and Plasma Processing, 34, 801–810.CrossRefGoogle Scholar
  249. 249.
    Jia, Z. X., Vega-Gonzalez, A., Ben Amar, M., Hassouni, K., Tieng, S. T., Touchard, S., Kanaev, A., & Duten, X. (2013). Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 208, 82–89.CrossRefGoogle Scholar
  250. 250.
    Ohshima, T., Kondo, T., Kitajima, N., & Sato, M. (2010). Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 46, 23–28.CrossRefGoogle Scholar
  251. 251.
    Mizuno, A., Kisanuki, Y., Noguchi, M., Katsura, S., Lee, S. H., Hong, Y. K., Shin, S. Y., & Kang, J. H. (1999). Indoor air cleaning using a pulsed discharge plasma. IEEE Transactions on Industry Applications, 35, 1284–1288.CrossRefGoogle Scholar
  252. 252.
    Klett, C., Duren, X., Tieng, S., Touchard, S., Jestin, P., Hassouni, K., & Vega-Gonzalez, A. (2014). Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. Journal of Hazardous Materials, 279, 356–364.CrossRefGoogle Scholar
  253. 253.
    Li, Y. Z., Fan, Z. Y., Shi, J. W., Liu, Z. Y., Zhou, J. W., & Shangguan, W. F. (2015). Modified manganese oxide octahedral molecular sieves M ’-OMS-2 (M ’ = Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catalysis Today, 256, 178–185.CrossRefGoogle Scholar
  254. 254.
    Thevenet, F., Olivier, L., Batault, F., Sivachandiran, L., & Locoge, N. (2015). Acetaldehyde adsorption on TiO2: Influence of NO2 preliminary adsorption. Chemical Engineering Journal, 281, 126–133.CrossRefGoogle Scholar
  255. 255.
    Gharib-Abou Ghaida, S., Assadi, A. A., Costa, G., Bouzaza, A., & Wolbert, D. (2016). Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization. Chemical Engineering Journal, 292, 276–283.CrossRefGoogle Scholar
  256. 256.
    Liang, W.-J., Li, J., Li, J.-X., Zhu, T., & Jin, Y.-Q. (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175, 1090–1095.CrossRefGoogle Scholar
  257. 257.
    Ding, H. X., Zhu, A. M., Yang, X. F., Li, C. H., & Xu, Y. (2005). Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. Journal of Physics D: Applied Physics, 38, 4160–4167.ADSCrossRefGoogle Scholar
  258. 258.
    Zhu, X. B., Gao, X., Qin, R., Zeng, Y. X., Qu, R. Y., Zheng, C. H., & Tu, X. (2015). Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170, 293–300.CrossRefGoogle Scholar
  259. 259.
    Trinh, Q. H., & Mok, Y. S. (2015). Non-thermal plasma combined with cordierite-supported Mn and Fe based catalysts for the decomposition of Diethylether. Catalysts, 5, 800–814.CrossRefGoogle Scholar
  260. 260.
    Trinh, H. Q., & Mok, Y. S. (2014). Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts. Chemical Engineering Journal, 251, 199–206.CrossRefGoogle Scholar
  261. 261.
    Barakat, C., Gravejat, P., Guaitella, O., Thevenet, F., & Rousseau, A. (2014). Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring. Applied Catalysis B: Environmental, 147, 302–313.CrossRefGoogle Scholar
  262. 262.
    Trinh, Q. H., Gandhi, M. S., & Mok, Y. S. (2015). Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst. Japanese Journal of Applied Physics, 54,1S 01AG04.Google Scholar
  263. 263.
    Zhu, X. B., Gao, X., Yu, X. N., Zheng, C. H., & Tu, X. (2015). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256, 108–114.CrossRefGoogle Scholar
  264. 264.
    Zhu, X. B., Tu, X., Mei, D. H., Zheng, C. H., Zhou, J. S., Gao, X., Luo, Z. Y., Ni, M. J., & Cen, K. F. (2016). Investigation of hybrid plasma-catalytic removal of acetone over CuO/gamma-Al2O3 catalysts using response surface method. Chemosphere, 155, 9–17.ADSCrossRefGoogle Scholar
  265. 265.
    Harling, A. M., Wallis, A. E., & Whitehead, J. C. (2007). The effect of temperature on the removal of DCM using non-thermal, atmospheric-pressure plasma-assisted catalysis. Plasma Processes and Polymers, 4, 463–470.CrossRefGoogle Scholar
  266. 266.
    Ogata, A., Saito, K., Kim, H.-H., Sugasawa, M., Aritani, H., & Einaga, H. (2010). Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal. Plasma Chemistry and Plasma Processing, 30, 33–42.CrossRefGoogle Scholar
  267. 267.
    Abedi, K., Ghorbani-Shahna, F., Bahrami, A., Jaleh, B., & Yarahmadi, R. (2015). Effect of TiO2-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system. Polish Journal of Chemical Technology, 17, 32–40.CrossRefGoogle Scholar
  268. 268.
    Zhu, R. Y., Mao, Y. B., Jiang, L. Y., & Chen, J. M. (2015). Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chemical Engineering Journal, 279, 463–471.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pieter Cools
    • 1
  • Nathalie De Geyter
    • 1
  • Rino Morent
    • 1
    Email author
  1. 1.Research Unit Plasma Technology, Department of Applied PhysicsGhent UniversityGhentBelgium

Personalised recommendations