Advertisement

Plasma Catalysis Modeling

  • Annemie BogaertsEmail author
  • Erik NeytsEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)

Abstract

Plasma catalysis is gaining increasing interest for various applications, as is obvious from the other chapters in this book. However, the underlying mechanisms are very complex and not yet fully understood. A better insight in these mechanisms can be obtained by experiments, but also computer modeling can be very useful for this purpose. This chapter gives an overview and some examples on (i) modeling the effect of plasma on the catalyst and catalytic surface reactions, and (ii) modeling the effect of catalyst on the plasma behavior.

Notes

Acknowledgments

We gratefully acknowledge K. Van Laer, Y.-R. Zhang, Y. Zhang, Q.-Z. Zhang, W. Wang, S. Huygh, and M. Shirazi (University of Antwerp) and M. Kushner (University of Michigan) for providing some of the figures used as illustrations in this chapter. The authors also acknowledge financial support from the Research Council of the University of Antwerp (TOP-BOF project), the IAP/7 (Interuniversity Attraction Poles) program “Physical Chemistry of Plasma-Surface Interactions (PSI)” by the Belgian Federal Science Policy Office (BELSPO), and the Fund for Scientific Research Flanders (FWO, grant no. G.0217.14 N).

References

  1. 1.
    Blin-Simiand, N., Tardivaux, P., Risacher, A., Jorand, F., & Pasquiers, S. (2005). Removal of 2-heptanone by dielectric barrier discharges - the effect of a catalyst support. Plasma Processes and Polymers, 2, 256–262.CrossRefGoogle Scholar
  2. 2.
    Hong, J. P., Chu, W., Chernavskii, P. A., & Khodakov, A. Y. (2010). Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer-Tropsch catalysts. Journal of Catalysis, 273, 9–17.CrossRefGoogle Scholar
  3. 3.
    Liu, C. J., Zou, J., Yu, K., Cheng, D., Han, Y., Zhan, J., Ratanatawante, C., & Jang, B. W. L. (2006). Plasma application for more environmentally friendly catalyst preparation. Pure and Applied Chemistry, 78, 1227–1238.CrossRefGoogle Scholar
  4. 4.
    Demidyuk, V., & Whitehead, J. C. (2007). Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chemistry and Plasma Processing, 27, 85–94.CrossRefGoogle Scholar
  5. 5.
    Shang, S., Liu, G., Chai, X., Tao, X., Li, X., Bai, M., Chu, W., Dai, X., Zhao, Y., & Yin, Y. (2009). Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet. Catalysis Today, 148, 268–274.CrossRefGoogle Scholar
  6. 6.
    Tu, X., Gallon, H. J., Twigg, M. V., Gorry, P. A., & Whitehead, J. C. (2011). Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 44, 274007.ADSCrossRefGoogle Scholar
  7. 7.
    Pylinina, A. I., & Mikhalenko, I. I. (2013). Activation of Cu-, Ag-, Au/ZrO2 catalysts for dehydrogenation of alcohols by low-temperature oxygen and hydrogen plasma. Theoretical and Experimental Chemistry, 49, 65–69.CrossRefGoogle Scholar
  8. 8.
    Guo, Y.-F., Ye, D.-Q., Chen, K.-F., He, J.-C., & Chen, W.-L. (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis. A, Chemical, 245, 93–100.CrossRefGoogle Scholar
  9. 9.
    Mahammadunnisa, S., Reddy, E. L., Ray, D., Subrahmanyam, C., & Whitehead, J. C. (2013). CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. International Journal of Greenhouse Gas Control, 16, 361–363.CrossRefGoogle Scholar
  10. 10.
    Liu, C.-J., Mallison, R., & Lobban, L. (1998). Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. Journal of Catalysis, 179, 326–334.CrossRefGoogle Scholar
  11. 11.
    Wu, C. C., Wu, C. I., Sturm, J. C., & Kahn, A. (1997). Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters, 70, 1348–1350.ADSCrossRefGoogle Scholar
  12. 12.
    Poppe, J., Völkening, S., Schaak, A., Schütz, E., Janek, J., & Imbihl, R. (1999). Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions. Physical Chemistry Chemical Physics, 1, 5241–5249.CrossRefGoogle Scholar
  13. 13.
    van Durme, J., Dewulf, J., Leys, C., & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324–333.Google Scholar
  14. 14.
    Liu, C. J., Wang, J. X., Yu, K. L., Eliasson, B., Xia, Q., & Xue, B. (2002). Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. Journal of Electrostatics, 54, 149–158.CrossRefGoogle Scholar
  15. 15.
    Kim, H. H., Ogata, A., & Futamura, S. (2006). Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34, 984–995.ADSCrossRefGoogle Scholar
  16. 16.
    Löfberg, A., Essakhi, A., Paul, S., Swesi, Y., Zanota, M.-L., Meille, V., Pitault, I., Supiot, P., Mutel, B., Le Courtois, V., & Bordes-Richard, E. (2011). Use of catalytic oxidation and dehydrogenation of hydrocarbons reactions to highlight improvement of heat transfer in catalytic metallic foams. Chemical Engineering Journal, 176-177, 49–56.CrossRefGoogle Scholar
  17. 17.
    Essakhi, A., Mutel, B., Supiot, P., Löfberg, A., Paul, S., Le Courtois, V., Meille, V., Pitault, I., & Bordes-Richard, E. (2011). Coating of structured catalytic reactors by plasma assisted polymerization of tetramethyldisiloxane. Polymer Engineering and Science, 51, 940–947.CrossRefGoogle Scholar
  18. 18.
    Guaitella, O., Thevenet, F., Puzenat, E., Guillard, C., & Rousseau, A. (2008). C2H2 oxidation by plasma/TiO2 combination: Influence of the porosity, and photocatalytic mechanisms under plasma exposure. Applied Catalysis B: Environmental, 80, 296–305.CrossRefGoogle Scholar
  19. 19.
    Rousseau, A., Guaitella, O., Gatilova, L., Thevenet, F., Guillard, C., Röpcke, J., & Stancu, G. D. (2005). Photocatalyst activation in a pulsed low pressure discharge. Applied Physics Letters, 87, 221501.ADSCrossRefGoogle Scholar
  20. 20.
    Kim, H. H., Ogata, A., & Futamura, S. (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis. B, Environmental, 79, 356–367.CrossRefGoogle Scholar
  21. 21.
    Kim, H. H., Oh, S. M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis. B, Environmental, 56, 213–220.CrossRefGoogle Scholar
  22. 22.
    Kim, H. H., & Ogata, A. (2011). Nonthermal plasma activates catalyst: From current understanding and future prospects. European Physical Journal Applied Physics, 55, 13806.ADSCrossRefGoogle Scholar
  23. 23.
    Wallis, A. E., Whitehead, J. C., & Zhang, K. (2007). Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catalysis Letters, 113, 29–33.CrossRefGoogle Scholar
  24. 24.
    Mei, D., Zhu, X., He, Y., Yan, J. D., & Tu, X. (2015). Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: Understanding the effect of packing materials. Plasma Sources Science and Technology, 24, 015011.ADSCrossRefGoogle Scholar
  25. 25.
    Whitehead, J. C. (2016). Plasma-catalysis: The known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 49, 243001.ADSCrossRefGoogle Scholar
  26. 26.
    Kang, W. S., Park, J. M., Kim, Y., & Hong, S. H. (2003). Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics. IEEE Transactions on Plasma Science, 31, 504–510.ADSCrossRefGoogle Scholar
  27. 27.
    Chang, J. S., Kostov, K. G., Urashima, K., Yamamoto, T., Okayasu, Y., Kato, T., Iwaizumi, T., & Yoshimura, K. (2000). Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Transactions on Industry Applications, 36, 1251–1259.CrossRefGoogle Scholar
  28. 28.
    Takuma, T. (1991). Field behaviour at a triple junction in composite dielectric arrangements. IEEE Transactions on Electrical Insulation, 26, 500–509.CrossRefGoogle Scholar
  29. 29.
    Holzer, F., Kopinke, F. D., & Roland, U. (2005). Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing, 25, 595–611.CrossRefGoogle Scholar
  30. 30.
    Tu, X., Gallon, H. J., & Whitehead, J. C. (2011). Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: Effect of packing with TiO2. Journal of Physics D: Applied Physics, 44, 482003.CrossRefGoogle Scholar
  31. 31.
    Kim, H. H., Kim, J.-H., & Ogata, A. (2009). Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles. Journal of Physics D: Applied Physics, 42, 135210.ADSCrossRefGoogle Scholar
  32. 32.
    Kim, H. H., Ogata, A., & Song, Y.-H. (2011). Propagation of surface streamers on the surface of HSY zeolites-supported silver nanoparticles. IEEE Transactions on Plasma Science, 39, 2220–2221.ADSCrossRefGoogle Scholar
  33. 33.
    Kim, H. H., & Ogata, A. (2012). Interaction of nonthermal plasma with catalyst for the air pollution control. International Journal of Plasma Environmental Science and Technology, 6, 43–48.Google Scholar
  34. 34.
    Kim, H. H., Teramoto, Y., Sano, T., Negishi, N., & Ogata, A. (2015). Effects of Si/Al ratio on the interaction of nonthermal plasma and ag/HY catalysts. Applied Catalysis B: Environmental, 166-167, 9–17.CrossRefGoogle Scholar
  35. 35.
    Tu, X., Gallon, H. J., & Whitehead, J. C. (2011). Transition behavior of packed-bed dielectric barrier discharge in argon. IEEE Transactions on Plasma Science, 39, 2172–2173.ADSCrossRefGoogle Scholar
  36. 36.
    Nozaki, T., Muto, N., Kado, S., & Okazaki, K. (2004). Dissociation of vibrationally excited methane on Ni catalyst: Part 2. Process diagnostics by emission spectroscopy. Catalysis Today, 89, 67–74.CrossRefGoogle Scholar
  37. 37.
    Mizuno, A. (2013). Generation of non-thermal plasma combined with catalysts and their application in environmental technology. Catalysis Today, 211, 2–8.CrossRefGoogle Scholar
  38. 38.
    Malik, M. A., Minamitani, Y., & Schoenbach, K. H. (2005). Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Transactions on Plasma Science, 33, 50–56.ADSCrossRefGoogle Scholar
  39. 39.
    Roland, U., Holzer, F., & Kopinke, F.-D. (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis. B, Environmental, 58, 217–226.CrossRefGoogle Scholar
  40. 40.
    Holzer, F., Roland, U., & Kopinke, F.-D. (2002). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Applied Catalysis. B, Environmental, 38, 163–181.CrossRefGoogle Scholar
  41. 41.
    Hensel, K., Katsura, S., & Mizuno, A. (2005). DC microdischarges inside porous ceramics. IEEE Transactions on Plasma Science, 33, 574–575.ADSCrossRefGoogle Scholar
  42. 42.
    Hensel, K., Martisovits, V., Machala, Z., Janda, M., Lestinsky, M., Tardiveau, P., & Mizuno, A. (2007). Electrical and optical properties of AC microdischarges in porous ceramics. Plasma Processes and Polymers, 4, 682–693.CrossRefGoogle Scholar
  43. 43.
    Hensel, K. (2009). Microdischarges in ceramic foams and honeycombs. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 54, 141–148.ADSCrossRefGoogle Scholar
  44. 44.
    Rousseau, A., Guaitella, O., Röpcke, J., Gatilova, L. V., & Tolmachev, Y. A. (2004). Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Applied Physics Letters, 85, 2199–2201.ADSCrossRefGoogle Scholar
  45. 45.
    Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.CrossRefGoogle Scholar
  46. 46.
    Neyts, E. C., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation - a review. Journal of Physics D: Applied Physics, 47, 224010.ADSCrossRefGoogle Scholar
  47. 47.
    Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43, 2216–2227.ADSCrossRefGoogle Scholar
  48. 48.
    Chen, H. L., Lee, H. M., Chen, S. H., Chao, Y., & Chang, M. B. (2008). Review of plasma catalysis on hydrocarbon reforming for hydrogen production - interaction, integration, and prospects. Applied Catalysis B: Environmental, 85, 1–9.ADSCrossRefGoogle Scholar
  49. 49.
    Whitehead, J. C. (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82, 1329–1336.CrossRefGoogle Scholar
  50. 50.
    Tu, X., Gallon, H. J., & Whitehead, J. C. (2013). Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge. Catalysis Today, 211, 120–125.CrossRefGoogle Scholar
  51. 51.
    Kim, H. H. (2004). Nonthermal plasma processing for air-pollution control: A historical review, current issues, and fture prospects. Plasma Processes and Polymers, 1, 91–110.CrossRefGoogle Scholar
  52. 52.
    Neyts, E. C., & Ostrikov, K. (2015). Nanoscale thermodynamic aspects of plasma catalysis. Catalysis Today, 256, 23–28.CrossRefGoogle Scholar
  53. 53.
    Neyts, E. C. (2016). Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 36, 185–212.CrossRefGoogle Scholar
  54. 54.
    Neyts, E. C., Ostrikov, K., Sunkara, M. K., & Bogaerts, A. (2015). Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 115, 13408–13446.CrossRefGoogle Scholar
  55. 55.
    Kim, H. H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.CrossRefGoogle Scholar
  56. 56.
    Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36, 45–72.CrossRefGoogle Scholar
  57. 57.
    Neyts, E. (2018). Atomistic simulations of plasma catalytic processes. Frontiers of Chemical Science and Engineering, 12, 145–154.CrossRefGoogle Scholar
  58. 58.
    Somers, W., Bogaerts, A., van Duin, A. C. T., & Neyts, E. C. (2014). Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 154-155, 1–8.CrossRefGoogle Scholar
  59. 59.
    Somers, W., Bogaerts, A., van Duin, A. C. T., & Neyts, E. C. (2012). Plasma species interacting with nickel surfaces: Toward an atomic scale understanding of plasma-catalysis. Journal of Physical Chemistry C, 116, 20958–20965.CrossRefGoogle Scholar
  60. 60.
    Somers, W., Bogaerts, A., van Duin, A. C. T., Huygh, S., Bal, K. M., & Neyts, E. C. (2013). Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale model. Catalysis Today, 211, 131–136.CrossRefGoogle Scholar
  61. 61.
    Huygh, S., Bogaerts, A., & Neyts, E. C. (2016). How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). Journal of Physical Chemistry C, 120, 21659–21669.CrossRefGoogle Scholar
  62. 62.
    Huygh, S., & Neyts, E. C. (2015). Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies. Journal of Physical Chemistry C, 119, 4908–4921.CrossRefGoogle Scholar
  63. 63.
    Shirazi, M., Neyts, E. C., & Bogaerts, A. (2017). DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 205, 605–614.CrossRefGoogle Scholar
  64. 64.
    Bal, K. M., Huygh, S., Bogaerts, A., & Neyts, E. C. (2018). Effect of plasma-induced surface charging on catalytic processes: Application to CO2 activation. Plasma Sources Science and Technology, 27, 024001.ADSCrossRefGoogle Scholar
  65. 65.
    Bal, K. M., & Neyts, E. C. (2018). Modelling molecular adsorption on charged or polarized surfaces: A critical flaw in common approaches. Physical Chemistry Chemical Physics, 20, 8456–8459.CrossRefGoogle Scholar
  66. 66.
    Neyts, E. C., & Bal, K. M. (2017). Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations. Plasma Processes and Polymers, 14, e1600158.CrossRefGoogle Scholar
  67. 67.
    Neyts, E. C., van Duin, A. C. T., & Bogaerts, A. (2012). Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. Journal of the American Chemical Society, 134, 1256–1260.CrossRefGoogle Scholar
  68. 68.
    Neyts, E. C., Ostrikov, K., Han, Z. J., Kumar, S., van Duin, A. C. T., & Bogaerts, A. (2013). Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment. Physical Review Letters, 110, 065501.ADSCrossRefGoogle Scholar
  69. 69.
    Somers, W., (2015). Atomic scale simulations of the interactions of plasma species on nickel catalyst surface. University of Antwerp, PhD-thesis.Google Scholar
  70. 70.
    Ni, B., Lee, C., Sun, R.-C., & Zhang, X. (2009). Microwave assisted heterogeneous catalysis: Effects of varying oxygen concentrations on the oxidative coupling of methane. Reaction Kinetics and Catalysis Letters, 98, 287–302.CrossRefGoogle Scholar
  71. 71.
    Zhdanov, V. P. (1999). Simulation of surface restructuring and oscillations in CO-NO reaction on Pt(100). The Journal of Chemical Physics, 110, 8748–8753.ADSCrossRefGoogle Scholar
  72. 72.
    Kersten, H., Deutsch, H., Steffen, H., Kroesen, G. M. W., & Hippler, R. (2001). The energy balance at substrate surfaces during plasma processing. Vacuum, 63, 385–431.ADSCrossRefGoogle Scholar
  73. 73.
    Li, S., Zheng, W., Tang, Z., & Gu, F. (2012). Plasma heating and temperature difference between gas pellets in packed bed with dielectric barrier discharge under natural convection condition. Heat Transfer Engineering, 33, 609–617.ADSCrossRefGoogle Scholar
  74. 74.
    Nozaki, T., & Okazaki, K. (2013). Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catalysis Today, 211, 29–38.CrossRefGoogle Scholar
  75. 75.
    JiangB, G. H. (2016). Enhanced dissociative chemisorption of CO2 via vibrational excitation. The Journal of Chemical Physics, 144, 091101.ADSCrossRefGoogle Scholar
  76. 76.
    Bal, K. M., & Neyts, E. C. (2015). Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 11, 4545–4554.CrossRefGoogle Scholar
  77. 77.
    Guerra, V., & Marinov, D. (2016). Dynamical Monte Carlo methods for plasma-surface reactions. Plasma Sources Science and Technology, 25, 045001.ADSCrossRefGoogle Scholar
  78. 78.
    Marinov, D., Teixeira, C., & Guerra, V. (2017). Deterministic and Monte Carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 14, 1600175.Google Scholar
  79. 79.
    Blaylock, D. W., Ogura, T., Green, W. H., & Beran, G. J. O. (2009). Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. Journal of Physical Chemistry C, 113, 4898–4908.CrossRefGoogle Scholar
  80. 80.
    Blaylock, D. W., Zhu, Y.-A., & Green, W. H. (2011). Computational investigation of the thermochemistry and kinetics of steam methane reforming over a multi-faceted nickel catalyst. Topics in Catalysis, 54, 828–844.CrossRefGoogle Scholar
  81. 81.
    Toshikubo, F. (2009). Modeling for plasma-enhanced catalytic reduction of nitrogen oxides. Thin Solid Films, 518, 957–961.ADSCrossRefGoogle Scholar
  82. 82.
    Delagrange, S., Pinard, L., & Tatibouët, J.-M. (2009). Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis. B, Environmental, 68, 92–98.CrossRefGoogle Scholar
  83. 83.
    Kim, H. H., Ogata, A., & Futamura, S. (2005). Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. Journal of Physics D: Applied Physics, 38, 1292–1300.ADSCrossRefGoogle Scholar
  84. 84.
    Van Laer, K., & Bogaerts, A. (2016). Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science and Technology, 25, 015002.ADSCrossRefGoogle Scholar
  85. 85.
    Takaki, K., Chang, J.-S., & Kostov, K. G. (2004). Atmospheric pressure of nitrogen plasmas in a ferroelectric packed bed barrier discharge reactor. Part I. Modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 11, 481–490.CrossRefGoogle Scholar
  86. 86.
    Russ, H., Neiger, M., & Lang, J. E. (1999). Simulation of micro discharges for the optimization of energy requirements for removal of NOx from exhaust gases. IEEE Transactions on Plasma Science, 27, 38–39.ADSCrossRefGoogle Scholar
  87. 87.
    Babaeva, N. Y., Bhoj, A. N., & Kushner, M. J. (2006). Streamer dynamics in gases containing dust particles. Plasma Sources Science and Technology, 15, 591–602.ADSCrossRefGoogle Scholar
  88. 88.
    Kruszelnicki, J., Engeling, K. W., Foster, J. E., Xiong, Z., & Kushner, M. J. (2017). Propagation of negative electric discharges through 2-dimensional packed bed reactors. Journal of Physics D: Applied Physics, 50, 025203.ADSCrossRefGoogle Scholar
  89. 89.
    Kang, W. S., Kim, H. H., Teramoto, Y., Ogata, A., Lee, J. Y., Kim, D. W., Hur, M., & Song, Y. H. (2018). Surface streamer propagations on an alumina bead: Experimental observation and numerical modelling. Plasma Sources Science and Technology, 27, 015018.ADSCrossRefGoogle Scholar
  90. 90.
    Zhang, Y., Wang, H.-Y., Jiang, W., & Bogaerts, A. (2015). Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 17, 083056.ADSCrossRefGoogle Scholar
  91. 91.
    Gao, M.-X., Zhang, Y., Wang, H.-Y., Guo, B., Zhang, Q.-Z., & Bogaerts, A. (2018). Mode transition of filaments in packed-bed dielectric barrier discharges. Catalysts, 8, 248.CrossRefGoogle Scholar
  92. 92.
    Van Laer, K., & Bogaerts, A. (2017). Influence of gap size and dielectric constant of the packing material on the plasma behaviour in a packed bed DBD reactor: A fluid modelling study. Plasma Processes and Polymers, 14, e1600129.CrossRefGoogle Scholar
  93. 93.
    Van Laer, K., & Bogaerts, A. (2017). How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: A modelling study. Plasma Sources Science & Technology, 26, 085007.ADSCrossRefGoogle Scholar
  94. 94.
    Wang, W., Kim, H.-H., Van Laer, K., & Bogaerts, A. (2018). Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chemical Engineering Journal, 334, 2467–2479.CrossRefGoogle Scholar
  95. 95.
    Michielsen, I., Uytdenhouwen, Y., Pype, J., Michielsen, B., Mertens, J., Reniers, F., Meynen, V., & Bogaerts, A. (2017). CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 326, 477–488.CrossRefGoogle Scholar
  96. 96.
    Uytdenhouwen, Y., Van Alphen, S., Michielsen, I., Meynen, V., Cool, P., & Bogaerts, A. (2018). A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter? Chemical Engineering Journal, 348, 557–568.CrossRefGoogle Scholar
  97. 97.
    Bhoj, A. N., & Kushner, M. J. (2006). Multi-scale simulation of functionalizationof rough polymer surfaces using atmospheric pressure plasmas. Journal of Physics D: Applied Physics, 39, 1594–1598.ADSCrossRefGoogle Scholar
  98. 98.
    Bhoj, A. N., & Kushner, M. J. (2008). Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges. Plasma Sources Science & Technology, 17, 035024.ADSCrossRefGoogle Scholar
  99. 99.
    Bhoj, A. N., & Kushner, M. J. (2008). Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: II. Treatment of micro-beads in He/NH3/H2O and He/O2/H2O mixtures. Plasma Sources Science & Technology, 17, 035025.ADSCrossRefGoogle Scholar
  100. 100.
    Wang, X. M., Foster, J. E., & Kushner, M. J. (2011). Plasma propagation through porous dielectric sheets. IEEE Transactions on Plasma Science, 39, 2244–2245.ADSCrossRefGoogle Scholar
  101. 101.
    Zhang, Y.-R., Van Laer, K., Neyts, E. C., & Bogaerts, A. (2016). Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 185, 56–67.CrossRefGoogle Scholar
  102. 102.
    Zhang, Y.-R., Neyts, E. C., & Bogaerts, A. (2016). Influence of the material dielectric constant on plasma generation inside catalyst pores. Journal of Physical Chemistry C, 120, 25923–25934.CrossRefGoogle Scholar
  103. 103.
    Zhang, Y.-R., Neyts, E. C., & Bogaerts, A. (2018). Enhancement of plasma generation in catalyst pores with different shapes. Plasma Sources Science and Technology, 27, 055008.ADSCrossRefGoogle Scholar
  104. 104.
    Zhang, Y., Wang, H.-Y., Zhang, Y.-R., & Bogaerts, A. (2017). Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas. Plasma Sources Science and Technology, 26, 054002.ADSCrossRefGoogle Scholar
  105. 105.
    Zhang, Q.-Z., & Bogaerts, A. (2018). Propagation of a plasma streamer in catalyst pores. Plasma Sources Science and Technology, 27, 035009.ADSCrossRefGoogle Scholar
  106. 106.
    Zhang, Q.-Z., Wang, W.-Z., & Bogaerts, A. (2018). Importance of surface charging during plasma streamer propagation in catalyst pores. Plasma Sources Science and Technology, 27, 065009.ADSCrossRefGoogle Scholar
  107. 107.
    Gentille, A. C., & Kushner, M. J. (1995). Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. Journal of Applied Physics, 78, 2074–2085.ADSCrossRefGoogle Scholar
  108. 108.
    Dorai, R., & Kushner, M. J. (2000). Consequences of propene and propane on plasma remediation of NOx. Journal of Applied Physics, 88, 3739–3747.ADSCrossRefGoogle Scholar
  109. 109.
    Dorai, R., & Kushner, M. J. (2003). Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NOx using dielectric barrier discharges. Journal of Physics D: Applied Physics, 36, 1075–1083.ADSCrossRefGoogle Scholar
  110. 110.
    Dorai, R., & Kushner, M. J. (2002). Repetitively pulsed plasma remediation of NOx in soot laden exhaust using dielectric barrier discharges. Journal of Physics D: Applied Physics, 35, 2954–2968.CrossRefGoogle Scholar
  111. 111.
    Teodoru, S., Kusano, Y., & Bogaerts, A. (2012). The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge. Plasma Processes and Polymers, 9, 652–689.CrossRefGoogle Scholar
  112. 112.
    Chang, M. B., Balbach, J. H., Rood, J. J., & Kushner, M. J. (1991). Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis. Journal of Applied Physics, 69, 4409–4417.ADSCrossRefGoogle Scholar
  113. 113.
    Chang, M. B., Kushner, M. J., & Rood, M. J. (1992). Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue gas streams using dielectric barrier discharge plasmas. Plasma Chemistry and Plasma Processing, 12, 565–580.CrossRefGoogle Scholar
  114. 114.
    Chang, M. B., Kushner, M. J., & Rood, M. J. (1992). Gas-phase removal of NO from gas streams via dielectric barrier discharges. Environmental Science & Technology, 26, 777–781.ADSCrossRefGoogle Scholar
  115. 115.
    Storch, D. G., & Kushner, M. J. (1993). Destruction mechanisms for formaldehyde in atmospheric temperature plasmas. Journal of Applied Physics, 73, 51–55.ADSCrossRefGoogle Scholar
  116. 116.
    Evans, D., Rosocha, L. A., Anderson, G. K., Coogan, J. J., & Kushner, M. J. (1993). Plasma remediation of trichloroethylene in silent discharge plasmas. Journal of Applied Physics, 74, 5378–5386.ADSCrossRefGoogle Scholar
  117. 117.
    Aerts, R., Tu, X., De Bie, C., Whitehead, J. C., & Bogaerts, A. (2012). An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas. Plasma Processes and Polymers, 9, 994–1000.CrossRefGoogle Scholar
  118. 118.
    Aerts, R., Tu, X., Van Gaens, W., Whitehead, J. C., & Bogaerts, A. (2013). Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 47, 6478–6485.ADSCrossRefGoogle Scholar
  119. 119.
    Vandenbroucke, A. M., Aerts, R., Van Gaens, W., De Geyter, N., Leys, C., Morent, R., & Bogaerts, A. (2015). Modeling and experimental study of tricholoroethylene abatement with a negative dirrect current corona discharge. Plasma Chemistry and Plasma Processing, 35, 217–230.CrossRefGoogle Scholar
  120. 120.
    De Bie, C., Martens, T., van Dijk, J., Paulussen, S., Verheyde, B., & Bogaerts, A. (2011). Dielectric barrier discharges used for the conversion of greenhouse gases: Modeling the plasma chemistry by fluid simulations. Plasma Sources Science and Technology, 20, 024008.ADSCrossRefGoogle Scholar
  121. 121.
    Yang, Y. (2003). Direct non-oxidative methane conversion by non-thermal plasma: Modeling study. Plasma Chemistry and Plasma Processing, 23, 327–346.CrossRefGoogle Scholar
  122. 122.
    Pringle, K. J., Whitehead, J. C., Wilman, J. J., & Wu, J. H. (2004). The chemistry of methane remediation by a non-thermal atmospheric pressure plasma. Plasma Chemistry and Plasma Processing, 24, 421–434.CrossRefGoogle Scholar
  123. 123.
    Agiral, A., Trionfetti, C., Lefferts, L., Seshan, K., & Gardeniers, J. G. E. (2008). Propane conversion at ambient temperatures C–C and C–H bond activation using cold plasma in a microreactor. Chemical Engineering and Technology, 31, 1116–1123.CrossRefGoogle Scholar
  124. 124.
    Pinhao, N. R., Janeco, A., & Branco, J. B. (2011). Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 31, 427–439.CrossRefGoogle Scholar
  125. 125.
    De Bie, C., Verheyde, B., Martens, T., van Dijk, J., Paulussen, S., & Bogaerts, A. (2011). Fluid modelling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge. Plasma Processes and Polymers, 8, 1033–1058.CrossRefGoogle Scholar
  126. 126.
    Aerts, R., Martens, T., & Bogaerts, A. (2012). Influence of vibrational states on CO2 splitting by dielectric barrier discharges. Journal of Physical Chemistry C, 116, 23257–23273.CrossRefGoogle Scholar
  127. 127.
    Snoeckx, R., Aerts, R., Tu, X., & Bogaerts, A. (2013). Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 117, 4957–4970.CrossRefGoogle Scholar
  128. 128.
    Snoeckx, R., Setareh, M., Aerts, R., Simon, P., Maghari, A., & Bogaerts, A. (2013). Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2. International Journal of Hydrogen Energy, 38, 16098–16120.CrossRefGoogle Scholar
  129. 129.
    Snoeckx, R., Zeng, Y. X., Tu, X., & Bogaerts, A. (2015). Plasma-based dry reforming: Improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Advances, 5, 29799–29808.CrossRefGoogle Scholar
  130. 130.
    Snoeckx, R., Heijkers, S., Van Wesenbeeck, K., Lenaerts, S., & Bogaerts, A. (2016). CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy and Environmental Science, 9, 999–1011.CrossRefGoogle Scholar
  131. 131.
    Heijkers, S., Snoeckx, R., Kozák, T., Silva, T., Godfroid, T., Britun, N., Snyders, R., & Bogaerts, A. (2015). CO2 conversion in a microwave plasma reactor in the presence of N2: Elucidating the role of vibrational levels. Journal of Physical Chemistry C, 119, 12815–12828.CrossRefGoogle Scholar
  132. 132.
    De Bie, C., van Dijk, J., & Bogaerts, A. (2015). The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge. Journal of Physical Chemistry C, 119, 22331–22350.CrossRefGoogle Scholar
  133. 133.
    De Bie, C., van Dijk, J., & Bogaerts, A. (2016). CO2 hydrogenation in a dielectric barrier discharge plasma revealed. J. Phys. Chem, C120, 25210–25224.Google Scholar
  134. 134.
    Istadi, A., & Amin, N. A. S. (2007). Modelling and optimization of catalytic-dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybrid artificial neural network - genetic algorithm technique. Chemical Engineering Science, 62, 6568–6581.CrossRefGoogle Scholar
  135. 135.
    JiwuL, L. F. (2013). Modeling of corona discharge combined with Mn2+ catalysis for the removal of SO2 from simulated flue gas. Chemosphere, 91, 1374–1379.ADSCrossRefGoogle Scholar
  136. 136.
    Tinck, S., Bogaerts, A., & Shamiryan, D. (2011). Simultaneous etching and deposition processes during the etching of silicon with a Cl2/O2/Ar inductively coupled plasma. Plasma Processes and Polymers, 8, 490–499.CrossRefGoogle Scholar
  137. 137.
    Tinck, S., De Schepper, P., & Bogaerts, A. (2013). Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas. Plasma Processes and Polymers, 10, 714–730.CrossRefGoogle Scholar
  138. 138.
    Tinck, S., Boullart, W., & Bogaerts, A. (2011). Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: Effects of SiO2 chamber wall coating. Plasma Sources Science and Technology, 20, 045012.ADSCrossRefGoogle Scholar
  139. 139.
    Kushner, M. J. (1987). A phenomenological model for surface deposition kinetics during plasma and sputter deposition of amorphous hydrogenated silicon. Journal of Applied Physics, 62, 4763–4772.ADSCrossRefGoogle Scholar
  140. 140.
    Zhang, D., & Kushner, M. J. (2000). Mechanisms for CF2 radical generation and loss on surfaces in fluorocarbon plasmas. Journal of Vacuum Science and Technology A, 18, 2661–2668.ADSCrossRefGoogle Scholar
  141. 141.
    Kushner, M. J. (2009). Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design. Journal of Physics D: Applied Physics, 42, 194013.ADSCrossRefGoogle Scholar
  142. 142.
    Tinck, S., Tillocher, T., Dussart, R., & Bogaerts, A. (2015). Cryogenic etching of silicon with SF6 inductively coupled plasmas: A combined modelling and experimental study. Journal of Physics D: Applied Physics, 48, 155204.ADSCrossRefGoogle Scholar
  143. 143.
    Hoekstra, R. J., Grapperhaus, H. J., & Kushner, M. J. (1997). Integrated plasma equipment model for polysilicon etch profilesin an inductively coupled plasma reactor with subwafer and superwafer topography. Journal of Vacuum Science and Technology A, 15, 1913–1921.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research group PLASMANT, Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations