Plasma Catalysis: Challenges and Future Perspectives

  • J. Christopher WhiteheadEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)


Plasma catalysis has been demonstrated as a promising alternative to thermal catalysis for environmental clean-up and the synthesis of platform chemicals and fuels from different feedstocks at low temperatures. There have been considerable and increasing research activities in this emerging and interdisciplinary field in recent years. However, plasma catalysis, particularly using a single-stage configuration, is a very complex process involving both gas-phase reactions driven by the plasma and plasma-assisted surface reactions. A number of challenges need to be addressed to achieve significant advancement in this field and the full potential of this emerging technology.


  1. 1.
    Gao, J., Zhu, J., Ehn, A., Aldén, M., & Li, Z. (2017). In-situ non-intrusive diagnostics of toluene removal by a gliding arc discharge using planar laser-induced fluorescence. Plasma Chemistry and Plasma Processing, 37, 433–450.CrossRefGoogle Scholar
  2. 2.
    Teramoto, Y., Kim, H. H., Ogata, A., & Negishi, N. (2014). Measurement of OH (X2Σ) in immediate vicinity of dielectric surface under pulsed dielectric barrier discharge at atmospheric pressure using two geometries of laser-induced fluorescence. Journal of Applied Physics, 115, 133302.Google Scholar
  3. 3.
    Jia, Z., Wang, X., Thevenet, F., & Rousseau, A. (2017). Dynamic probing of plasma-catalytic surface processes: Oxidation of toluene on CeO2. Plasma Processes and Polymers, 14, 1600114.Google Scholar
  4. 4.
    Klages, C.-P., Hinze, A., & Khosravi, Z. (2013). Nitrogen plasma modification and chemical derivatization of polyethylene surfaces - an in situ study using FTIR-ATR spectroscopy. Plasma Processes and Polymers, 10, 948–958.CrossRefGoogle Scholar
  5. 5.
    Stere, C. E., Anderson, J. A., Chansai, S., Delgado, J. J., Goguet, A., Graham, W. G., Hardacre C., Taylor S. F. R., Tu, X., Wang, Z., & Yang, H. (2017). Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis. Angewandte Chemie, International Edition, 56, 5579–5583.Google Scholar
  6. 6.
    Neyts, E. C., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation-a review. Journal of Physics D: Applied Physics, 47, 224010.ADSCrossRefGoogle Scholar
  7. 7.
    Somers, W., Bogaerts, A., Van Duin, A. C. T., Huygh, S., Bal, K. M., & Neyts, E. C. (2013). Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 211, 131–136.CrossRefGoogle Scholar
  8. 8.
    Tennyson, J., Rahimi, S., Hill, C., Tse, L., Vibhakar, A., & Akello-Egwel, D. (2017). QDB: A new database of plasma chemistries and reactions. Plasma Sources Science & Technology, 26, 055014.Google Scholar
  9. 9.
    Bogaerts, A., De Bie, C., Eckert, M., Georgieva, V., Martens, T., Neyts, E., & Tinck, S. (2010). Modeling of the plasma chemistry and plasma-surface interactions in reactive plasmas. Pure and Applied Chemistry, 82, 1283–1299.CrossRefGoogle Scholar
  10. 10.
    Aerts, R., Tu, X., Van Gaens, W., Whitehead, J. C., & Bogaerts, A. (2013). Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 47, 6478–6485.ADSCrossRefGoogle Scholar
  11. 11.
    Koen Van, L., & Annemie, B. (2016). Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science and Technology, 25, 015002.CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Wang, H. Y., Jiang, W., & Bogaerts, A. (2015). Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 17, 12.Google Scholar
  13. 13.
    Van Laer, K., & Bogaerts, A. (2015). Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology, 3, 1038–1044.CrossRefGoogle Scholar
  14. 14.
    De Bie, C., Martens, T., van Dijk, J., Paulussen, S., Verheyde, B., Corthals, S., & Bogaerts, A. (2011). Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations. Plasma Sources Science and Technology, 20, 024008.Google Scholar
  15. 15.
    Heijkers, S., Snoeckx, R., Kozák, T., Silva, T., Godfroid, T., Britun, N., Snyders, R., & Bogaerts, A. (2015). CO2 conversion in a microwave plasma reactor in the presence of N2: Elucidating the role of vibrational levels. Journal of Physical Chemistry C, 119, 12815–12828.CrossRefGoogle Scholar
  16. 16.
    Cleiren, E., Heijkers, S., Ramakers, M., & Bogaerts, A. (2017). Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. ChemSusChem, 10, 4025-4036.Google Scholar
  17. 17.
    van Santen, R. A., Markvoort, A. J., Filot, I. A. W., Ghouri, M. M., & Hensen, E. J. M (2013). Mechanism and microkinetics of the Fischer-Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.Google Scholar
  18. 18.
    Filot, I. A. W., van Santen, R. A., & Hensen, E. J. M. (2014). The optimally performing Fischer-Tropsch catalyst. Angewandte Chemie-International Edition, 53, 12746–12750.CrossRefGoogle Scholar
  19. 19.
    Kim, J., Go, D. B., & Hicks, J. C. (2017). Synergistic effects of plasma-catalyst interactions for CH4 activation. Physical Chemistry Chemical Physics, 19, 13010–13021.CrossRefGoogle Scholar
  20. 20.
    Snoeckx, R., & Bogaerts, A. (2017). Plasma technology - a novel solution for CO2 conversion? Chemical Society Reviews, 46, 5805-5863.Google Scholar
  21. 21.
    Hessel, V., Cravotto, G., Fitzpatrick, P., Patil, B. S., Lang, J., & Bonrath, W. (2013). Industrial applications of plasma, microwave and ultrasound techniques: Nitrogen-fixation and hydrogenation reactions. Chemical Engineering and Processing, 71, 19–30.CrossRefGoogle Scholar
  22. 22.
    Mori, S., Matsuura, N., Tun, L. L., & Suzuki, M. (2016). Direct synthesis of carbon nanotubes from only CO2 by a hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell. Plasma Chemistry and Plasma Processing, 36, 231–239.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry, The University of ManchesterManchesterUK

Personalised recommendations