Advertisement

Plasma Catalysis: Introduction and History

  • J. Christopher WhiteheadEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 106)

Abstract

Plasma catalysis is a hybrid technique where a catalytic material is used in conjunction with a gas discharge yielding a viable technique which gives enhanced performance for a range of gas processing applications such as removal of pollutants including NOx, SOx and volatile organic compounds (VOCs) and production of a range of chemicals such as ammonia from N2 and H2, hydrogen and oxygenates by the reforming of hydrocarbons and a range of added-value chemicals from the conversion of CO2. This chapter gives an introduction and brief background to our current process and understanding in the field of plasma catalysis.

References

  1. 1.
    Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36, 45–72.Google Scholar
  2. 2.
    Patil, B. S., Wang, Q., Hessel,V., & Lang, J. (2016). Plasma-assisted nitrogen fixation reactions. In G. Stefanidis & A. Stankiewicz (Eds.), Alternative energy sources for green chemistry (pp. 296–338). Cambridge, UK: Royal Society of Chemistry.Google Scholar
  3. 3.
    Yu, Q., Wang, H., Liu, T., Xiao, L., Jiang, X., & Zheng, X. (2012). High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environmental Science & Technology, 46, 2337–2344.ADSCrossRefGoogle Scholar
  4. 4.
    Tao, X., Bai, M., Li, X., Long, H., Shang, S., Yin, Y., & Dai, X. (2011). CH4-CO2 reforming by plasma – challenges and opportunities. Progress in Energy and Combustion Science, 37, 113–124.CrossRefGoogle Scholar
  5. 5.
    Whitehead, J. C. (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82, 1329–1336.CrossRefGoogle Scholar
  6. 6.
    Whitehead, J. C. (2014). Plasma catalysis for volatile organic compounds abatement. In Handbook of advanced methods and processes in oxidation catalysis (pp. 155–172). London: Imperial College Press.CrossRefGoogle Scholar
  7. 7.
    Whitehead, J. C. (2016). Plasma-catalysis: The known knowns, the known unknowns and the unknown unknowns. Journal of Physics D-Applied Physics, 49, 243001.ADSCrossRefGoogle Scholar
  8. 8.
    Snoeckx, R., & Bogaerts, A. (2017). Plasma technology – A novel solution for CO2 conversion? Chemical Society Reviews, 46, 5805–5863.CrossRefGoogle Scholar
  9. 9.
    Neyts, E. C. (2016). Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 36, 185–212.CrossRefGoogle Scholar
  10. 10.
    Davy, H. (1817). Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continuous light in mixtures of inflammable gases and air without flame. Philosophical Transactions of the Royal Society A, 107, 77–85.ADSCrossRefGoogle Scholar
  11. 11.
    Thomas, J. M. (2015). Sir Humphry Davy and the coal miners of the world: A commentary on Davy (1816) ‘An account of an invention for giving light in explosive mixtures of fire-damp in coal mines’. Philosophical Transactions – Royal Society. Mathematical, Physical and Engineering Sciences, 373, 20140288.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Berzelius, J. J. (1836). Considerations respecting a New Power which acts in the Formation of Organic Bodies. Edinburgh New Philosophical Journal, 21, 223.Google Scholar
  13. 13.
    Ostwald, W. (1894). Zeitschrift für Physikalische Chemie, 15, 705–706.Google Scholar
  14. 14.
    Hauksbee, F. (1709). Physico-mechanical experiments on various subjects; containing an account of several surprizing phenomena touching light and electricity, producible on the attrition of bodies, with many other remarkable appearances... together with the explanations of all the machines... and other apparatus us’d in making the experiments. London: For the author; pr. R. Brugis.Google Scholar
  15. 15.
    Maia, E., Serra, I., & Peres, M. (2010). The gas discharges in history and teaching of physics and chemistry. Travaux de laboratoire institut Rocha Cabral Lisbonne, 100, 1–14.Google Scholar
  16. 16.
    Faraday, M. (1838). Experimental researches in electricity. −Thirteenth series. Philosophical Transactions. Royal Society of London, 128, 125–168.ADSCrossRefGoogle Scholar
  17. 17.
    Faraday, M. (1834). On the power of metals and other solids to induce the combination of gaseous bodies. Philosophical Transactions of the Royal Society A, 124, 55–76.ADSCrossRefGoogle Scholar
  18. 18.
    Robertson, A. J. B. (1983). The development of ideas on heterogeneous catalysis: Progress from Davy to Langmuir. Platinum Metals Review, 27, 31–39.Google Scholar
  19. 19.
    Ray, A. B., & Anderegg, F. O. (1921). The oxidation of carbon monoxide by passage with oxygen or air through the silent discharge and over ozone decomposing catalysts. Journal of the American Chemical Society, 43, 967–978.CrossRefGoogle Scholar
  20. 20.
    Berthelot, P. E. M. (1879). Recherches sur l’ozone et sur l’effuse électrique. Comptes rendus de l’Académie des Sciences, 88, 50–52.Google Scholar
  21. 21.
    Harling, A. M., Glover, D. J., Whitehead, J. C., & Zhang, K. (2009). The role of ozone in the plasma-catalytic destruction of environmental pollutants. Applied Catalysis B-Environmental, 90, 157–161.CrossRefGoogle Scholar
  22. 22.
    Vandenbroucke, A. M., Mora, M., Jimenez-Sanchidrian, C., & Romero-Salguero, F. J. (2014). TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B-Environmental, 156, 94–100.CrossRefGoogle Scholar
  23. 23.
    Wang, L., Yi, Y., Zhao, Y., Zhang, R., Zhang, J., & Guo, H. (2015). NH3 decomposition for H2 generation: Effects of cheap metals and supports on plasma-catalyst synergy. ACS Catalysis, 5, 4167–4174.Google Scholar
  24. 24.
    Gutsol, A., Rabinovich, A., & Fridman, A. (2011). Combustion-assisted plasma in fuel conversion. Journal of Physics D-Applied Physics, 44, 274001.ADSCrossRefGoogle Scholar
  25. 25.
    Xu, S., Whitehead, J. C., & Martin, P. A. (2017). CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N2. Chemical Engineering Journal (Amsterdam, Netherlands), 327, 764–773.Google Scholar
  26. 26.
    Chen, G., Godfroid, T., Britun, N., Georgieva, V., Delplancke-Ogletree, M., & Snyders, R. (2017). Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Applied Catalysis B-Environmental, 214, 114–125.CrossRefGoogle Scholar
  27. 27.
    Froment, G. F., Bischoff, K. B., & De Wilde, J. (1990). Chemical reactor analysis and design (Vol. 2). New York: Wiley.Google Scholar
  28. 28.
    Barakat, C., Gravejat, P., Guaitella, O., Thevenet, F., & Rousseau, A. (2014). Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring. Applied Catalysis B-Environmental, 147, 302–313.CrossRefGoogle Scholar
  29. 29.
    Holzer, F., Roland, U., & Kopinke, F. D. (2002). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds part 1. Accessibility of the intra-particle volume. Applied Catalysis B-Environmental, 38, 163–181.CrossRefGoogle Scholar
  30. 30.
    Hibert, C., Gaurand, I., Motret, O., & Pouvesle, J. M. (1999). OH(X) measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge. Journal of Applied Physics, 85, 7070–7075.ADSCrossRefGoogle Scholar
  31. 31.
    Kim, H. H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.CrossRefGoogle Scholar
  32. 32.
    Mizushima, T., Matsumoto, K., Ohkita, H., & Kakuta, N. (2007). Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 27, 1–11.CrossRefGoogle Scholar
  33. 33.
    Glonek, K., Wroblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wrobel, R. J., Koren, Z. C, & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Applied Surface Science, 420, 873–881.ADSCrossRefGoogle Scholar
  34. 34.
    Liu, L., Zheng, C., Wu, S., Gao, X., Ni, M., & Cen, K. (2017). Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere. Applied Surface Science, 416, 78–85.ADSCrossRefGoogle Scholar
  35. 35.
    Liu, C., Li, M., Wang, J., Zhou, X., Guo, Q., Yan, J., & Li, Y. (2016). Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 37, 340–348.CrossRefGoogle Scholar
  36. 36.
    Wang, W., Wang, Z., Wang, J., Zhong, C., & Chang, J. (2017). Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Advanced Science, 4, 1600486.CrossRefGoogle Scholar
  37. 37.
    Marinov, D., Guaitella, O., de los Arcos, T., von Keudell, A., & Rousseau, A. (2014). Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal of Physics D-Applied Physics, 47, 475204.Google Scholar
  38. 38.
    Lee, J., Sorescu, D. C., & Deng, X. (2011). Electron-induced dissociation of CO2 on TiO2(110). Journal of the American Chemical Society, 133, 10066–10069.CrossRefGoogle Scholar
  39. 39.
    Mei, D., Zhu, X., Wu, C., Ashford, B., Williams, P. T., & Tu, X. (2016). Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Applied Catalysis B-Environmental, 182, 525–532.Google Scholar
  40. 40.
    Kim, H.-H., Teramoto, Y., & Ogata, A. (2016). Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and gamma-Al2O3-supported Ag catalysts. Journal of Physics D-Applied Physics, 49, 415204.CrossRefGoogle Scholar
  41. 41.
    Neyts, E. C., & Bal, K. M. (2017). Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations. Plasma Processes and Polymers, 14, 1600158.Google Scholar
  42. 42.
    Mei, D., Zhu, X., He, Y., Yan, J. D, & Tu, X. (2015) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: Understanding the effect of packing materials. Plasma Sources Science & Technology, 24, 015011.Google Scholar
  43. 43.
    Michielsen, I., Uytdenhouwen, Y., Pype, J., Michielsen, B., Mertens, J., Reniers, F., Meynen, V., & Bogaerts, A. (2017). CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 326, 477–488.Google Scholar
  44. 44.
    Butterworth, T., Elder, R., & Allen, R. (2016). Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor. Chemical Engineering Journal, 293, 55–67.CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Wang, H., Jiang, W., & Bogaerts, A. (2015). Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 17, 083056.Google Scholar
  46. 46.
    Koen Van, L., & Annemie, B. (2016). Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science and Technology, 25, 015002.CrossRefGoogle Scholar
  47. 47.
    Tu, X., & Whitehead, J. C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B-Environmental, 125, 439–448.CrossRefGoogle Scholar
  48. 48.
    Roland, U., Holzer, F., & Kopinke, F. D. (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73, 315–323.CrossRefGoogle Scholar
  49. 49.
    Zhang, Y., Van Laer, K., Neyts, E. C., Bogaerts, A. (2016). Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B-Environmental, 185, 56–67.CrossRefGoogle Scholar
  50. 50.
    Gicquel, C., Cavadias, S., & Amouroux, J. (1986). Heterogeneous catalysis in low-pressure plasmas. Journal of Physics D: Applied Physics, 19, 2013–2042.ADSCrossRefGoogle Scholar
  51. 51.
    Juurlink, L. B. F., McCabe, P. R., Smith, R. R., DiCologero, C. L., & Utz, A. L. (1999). Eigenstate-resolved studies of gas-surface reactivity: CH43) dissociation on Ni(100). Physical Review Letters, 83, 868–871.Google Scholar
  52. 52.
    Nozaki, T., & Okazaki, K. (2013). Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catalysis Today, 211, 29–38.CrossRefGoogle Scholar
  53. 53.
    Kameshima, S., Tamura, K., Mizukami, R., Yamazaki, T., & Nozaki, T. (2017). Parametric analysis of plasma-assisted pulsed dry methane reforming over Ni/Al2O3 catalyst. Plasma Processes and Polymers, 14, 1600096.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry, The University of ManchesterManchesterUK

Personalised recommendations