Advertisement

On Hardware Implementation of Tang-Maitra Boolean Functions

  • Mustafa KhairallahEmail author
  • Anupam Chattopadhyay
  • Bimal Mandal
  • Subhamoy Maitra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

In this paper, we investigate the hardware circuit complexity of the class of Boolean functions recently introduced by Tang and Maitra (IEEE-TIT 64(1): 393–402, 2018). While this class of functions has very good cryptographic properties, the exact hardware requirement is an immediate concern as noted in the paper itself. In this direction, we consider different circuit architectures based on finite field arithmetic and Boolean optimization. An estimation of the circuit complexity is provided for such functions given any input size n. We study different candidate architectures for implementing these functions, all based on the finite field arithmetic. We also show different implementations for both ASIC and FPGA, providing further analysis on the practical aspects of the functions in question and the relation between these implementations and the theoretical bound. The practical results show that the Tang-Maitra functions are quite competitive in terms of area, while still maintaining an acceptable level of throughput performance for both ASIC and FPGA implementations.

Keywords

Boolean functions Bent functions Cryptology Finite fields Hardware implementation Stream cipher 

Supplementary material

References

  1. [Car93]
    Carlet, C.: Two new classes of bent functions. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 77–101. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_8CrossRefGoogle Scholar
  2. [CS09]
    Thomas, W., Cusick, W., Stănică, P.: Cryptographic Boolean Functions and Applications. Academic Press, Cambridge (2009)zbMATHGoogle Scholar
  3. [Dil74]
    Dillon, J.F.: Elementary Hadamard difference sets. Ph.D. thesis (1974)Google Scholar
  4. [DIS09]
    Deschamps, J.-P., Imana, J.L., Sutter, G.D.: Hardware Implementation of Finite-Field Arithmetic. McGraw-Hill, New York (2009)Google Scholar
  5. [Dob94]
    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60590-8_5CrossRefGoogle Scholar
  6. [FF98]
    Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054147CrossRefGoogle Scholar
  7. [Fon99]
    Fontaine, C.: On some cosets of the first-order Reed-Muller code with high minimum weight. IEEE Trans. Inf. Theory 45(4), 1237–1243 (1999)MathSciNetCrossRefGoogle Scholar
  8. [IT88]
    Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF (2m) using normal bases. Inf. comput. 78(3), 171–177 (1988)CrossRefGoogle Scholar
  9. [KCP17]
    Khairallah, M., Chattopadhyay, A., Peyrin, T.: Looting the LUTs: FPGA optimization of AES and AES-like ciphers for authenticated encryption. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 282–301. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71667-1_15CrossRefGoogle Scholar
  10. [KMT18]
    Kavut, S., Maitra, S., Tang, D.: Searching balanced Boolean functions on even number of variables with excellent autocorrelation profile. In: Tenth International Workshop on Coding and Cryptography, Saint-Petersburg, Russia, 18–22 September 2017Google Scholar
  11. [LN94]
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  12. [McF73]
    McFarland, R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15(1), 1–10 (1973)MathSciNetCrossRefGoogle Scholar
  13. [MM16]
    Mesnager, S.: Bent Functions. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32595-8CrossRefzbMATHGoogle Scholar
  14. [PCZ17]
    Pasalic, E., Chattopadhyay, A., Zhang, W.: Efficient implementation of generalized Maiorana-McFarland class of cryptographic functions. J. Cryptogr. Eng. 7(4), 287–295 (2017)CrossRefGoogle Scholar
  15. [Rot76]
    Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)CrossRefGoogle Scholar
  16. [SM08]
    Stănică, P., Maitra, S.: Rotation symmetric Boolean functions-count and cryptographic properties. Discrete Appl. Math. 156(10), 1567–1580 (2008)MathSciNetCrossRefGoogle Scholar
  17. [Spi80]
    Spillman, R.J.: The effect of DON’T CARES on the complexity of combinational circuits. Proc. IEEE 68(8), 1021–1022 (1980)CrossRefGoogle Scholar
  18. [TM18]
    Tang, D., Maitra, S.: Construction of \(n\)-variable (n\(\equiv \) 2 mod 4) balanced Boolean functions with maximum absolute value in autocorrelation spectra \(< 2^{n/2}\). IEEE Trans. Inf. Theory 64(1), 393–402 (2018)CrossRefGoogle Scholar
  19. [TKMM18]
    Tang, D., Kavut, S., Mandal, B., Maitra, S.: Modifying Maiorana-McFarland type bent functions for good cryptographic properties, April 2018 (preprint)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mustafa Khairallah
    • 1
    Email author
  • Anupam Chattopadhyay
    • 1
  • Bimal Mandal
    • 2
  • Subhamoy Maitra
    • 2
  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.Indian Statistical InstituteKolkataIndia

Personalised recommendations