Advertisement

Direct Constructions of (Involutory) MDS Matrices from Block Vandermonde and Cauchy-Like Matrices

  • Qiuping Li
  • Baofeng WuEmail author
  • Zhuojun Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

MDS matrices are important components in the design of linear diffusion layers of many block ciphers and hash functions. Recently, there have been a lot of work on searching and construction of lightweight MDS matrices, most of which are based on matrices of special types over finite fields. Among all those work, Cauchy matrices and Vandermonde matrices play an important role since they can provide direct constructions of MDS matrices. In this paper, we consider constructing MDS matrices based on block Vandermonde matrices. We find that previous constructions based on Vandermonde matrices over finite fields can be directly generalized if the building blocks are pairwise commutative. Different from previous proof method, the MDS property of a matrix constructed by two block Vandermonde matrices is confirmed adopting a Lagrange interpolation technique, which also sheds light on a relationship between it and an MDS block Cauchy matrix. Those constructions generalize previous ones over finite fields as well, but our proofs are much simpler. Furthermore, we present a new type of block matrices called block Cauchy-like matrices, from which MDS matrices can also be constructed. More interestingly, those matrices turn out to have relations with MDS matrices constructed from block Vandermonde matrices and the so-called reversed block Vandermonde matrices. For all these constructions, we can also obtain involutory MDS matrices under certain conditions. Computational experiments show that lightweight involutory MDS matrices can be obtained from our constructions.

Keywords

MDS matrix Involutory matrix Block Vandermonde matrix Block Cauchy-like matrix 

References

  1. 1.
    Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS diffusion layers for block ciphers and hash functions. In: Proceedings of 2013 IEEE International Symposium on Information Theory (ISIT), pp. 1551–C1555. IEEE (2013)Google Scholar
  2. 2.
    Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46706-0_1CrossRefGoogle Scholar
  3. 3.
    Barreto, P.S., Rijmen, V.: The Khazad legacy-level block cipher. Submission to the NESSIE ProjectGoogle Scholar
  4. 4.
    Berger, T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03515-4_18CrossRefGoogle Scholar
  5. 5.
    Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in \(GF(2^n)\) with applications to MDS matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_23CrossRefzbMATHGoogle Scholar
  6. 6.
    Blaum, M., Roth, R.M.: On lowest density MDS codes. IEEE Trans. Inf. Theory 45(1), 46–59 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cui, T., Jin, C., Kong, Z.: On compact cauchy matrices for substitution permutation networks. IEEE Trans. Comput. 64(7), 1998–2102 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_20CrossRefGoogle Scholar
  9. 9.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_13CrossRefGoogle Scholar
  10. 10.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23951-9_22CrossRefGoogle Scholar
  11. 11.
    Chand Gupta, K., Ghosh Ray, I.: On constructions of involutory MDS matrices. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 43–60. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38553-7_3CrossRefGoogle Scholar
  12. 12.
    Gazzoni Filho, D., Barreto, P., Rijmen, V.: The Maelstrom-0 hash function. In Proceedings of the 6th Brazilian Symposium on Information and Computer Systems Security (2006)Google Scholar
  13. 13.
    Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: On the direct construction of recursive MDS matrices. Des. Codes Crypt. 82(1–2), 77–94 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gauravaram, P., et al.: Grøstl a SHA-3 candidate. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)Google Scholar
  15. 15.
    Guo, Z., Liu, R., Gao, S., Wu, W., Lin, D.: Direct construction of optimal rotational-XOR diffusion primitives. IACR Trans. Symmetric Cryptol. 2017(4), 169–187 (2017)Google Scholar
  16. 16.
    Gohberg, I., Olshevsky, V.: Complexity of multiplication with vectors for structured matrices. Linear Algebra Appl. 192, 163–192 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017).  https://doi.org/10.13154/tosc.v2017.i4.130-168CrossRefGoogle Scholar
  18. 18.
    Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line programs for MDS matrices yet another XOR count paper. IACR Trans. Symmetric Cryptol. 2017, 188–211 (2017).  https://doi.org/10.13154/tosc.v2017.i4.188-211CrossRefGoogle Scholar
  19. 19.
    Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-optimal SPN structures and components with a fair comparison. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44709-3_24CrossRefzbMATHGoogle Scholar
  20. 20.
    Lacan, J., Fimes, J.: Systematic MDS erasure codes based on Vandermonde matrices. IEEE Commun. Lett. 8(9), 570–572 (2004)CrossRefGoogle Scholar
  21. 21.
    Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_6CrossRefGoogle Scholar
  22. 22.
    Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_7CrossRefGoogle Scholar
  23. 23.
    Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-MDS matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017)Google Scholar
  24. 24.
    Rijmen, V., Barreto, P.: The Anubis Block Cipher. The NESSIE (2000)Google Scholar
  25. 25.
    Rijmen, V., Daemen, J.: The Design of Rijndael: AES. The Advanced Encryption Standard. Springer, Berlin (2002).  https://doi.org/10.1007/978-3-662-04722-4CrossRefzbMATHGoogle Scholar
  26. 26.
    Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60865-6_47CrossRefGoogle Scholar
  27. 27.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48116-5_23CrossRefGoogle Scholar
  29. 29.
    Sajadieh, M., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of involutory MDS matrices from Vandermond matrices in GF (\(2^{q}\)). Des. Codes Crypt. 2012(64), 287–308 (2012)CrossRefGoogle Scholar
  30. 30.
    Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of Toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)Google Scholar
  31. 31.
    Schneier, B., Kelsey, J., Whiting, D., et al.: Twofish: a 128-bit block cipher. NIST AES Proposal, vol. 15, p. 23 (1998)Google Scholar
  32. 32.
    Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84(501), 460–467 (2000)CrossRefGoogle Scholar
  33. 33.
    Xiao, L., Heys, H.M.: Hardware design and analysis of block cipher components. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 164–181. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36552-4_12CrossRefGoogle Scholar
  34. 34.
    Youssef, A.M., Mister, S., Tavares, S.E.: On the design of linear transformations for substitute permutation encryption networks. In: Workshop on Selected Areas of Cryptography 1996, pp. 40–48 (1997)Google Scholar
  35. 35.
    Zhao, R., Zhang, R., Li, Y., Wu, B.: On constructions of a sort of MDS block diffusion matrices for block ciphers and hash functions. Sci. Chin. Inf. Sci. 2016(59), 99–101 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Mathematics Mechanization Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations