Advertisement

Codes of Length Two Correcting Single Errors of Limited Size II

  • Torleiv KløveEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

Linear codes of length 2 over the integers modulo some integer q that can correct single errors of limited size are considered. A code can be determined by a check pair of integers. The errors e considered are in the range \(-\mu \le e \le \lambda \), such a code can only exist for q sufficiently large. The main content of this note is to make this statement precise, that is, to determine “q sufficiently large” in terms of the integers \(-\mu \) and \(\lambda \).

Keywords

Error correcting code Errors of limited size Integers modulo n 

References

  1. 1.
    Battaglioni, M., Chiaraluce, F., Kløve, T.: On non-linear codes correcting errors of limited size. In: Proceedings of the Globecom, Singapore, 4–8 December 2017, pp. 1–7. IEEE Xplore (2017)Google Scholar
  2. 2.
    Dolecek, L., Cassuto, Y.: Channel coding for nonvolatile memory technologies: theoretical advances and practical considerations. Proc. IEEE 105(9), 1705–1724 (2017)CrossRefGoogle Scholar
  3. 3.
    Elarief, N., Bose, B.: Optimal, systematic, \(q\)-ary codes correcting all asymmetric and symmetric errors of limited magnitude. IEEE Trans. Inf. Theory 56, 979–983 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash memories. IEEE Trans. Inf. Theory 55, 2659–2673 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kløve, T.: Codes of length 2 correcting single errors of limited size. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 190–201. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27239-9_12CrossRefGoogle Scholar
  6. 6.
    Kløve, T.: Codes of length two correcting single errors of limited size. In: Cryptography and Communications (to appear)Google Scholar
  7. 7.
    Kløve, T., Elarief, N., Bose, B.: Systematic, single limited magnitude error correcting codes for flash memories. IEEE Trans. Inf. Theory 57, 4477–4487 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kløve, T., Luo, J., Naydenova, I., Yari, S.: Some codes correcting asymmetric errors of limited magnitude. IEEE Trans. Inf. Theory 57, 7459–7472 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kløve, T., Luo, J., Yari, S.: Codes correcting single errors of limited magnitude. IEEE Trans. Inf. Theory 58, 2206–2219 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schwartz, M.: Quasi-cross lattice tilings with applications to flash memory. IEEE Trans. Inf. Theory 58, 2397–2405 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yari, S., Kløve, T., Bose, B.: Some linear codes correcting single errors of limited magnitude for flash memories. IEEE Trans. Inf. Theory 59, 7278–7287 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations