Bioelectrocatalytic Assessment of the Activating Effect and Toxic Interaction Between Carbon Nanomaterials and Microbial Cells

  • A. N. ReshetilovEmail author
  • S. E. Tarasov
  • Yu V. Plekhanova


Carbon and other types of nanomaterials have found broad application in various fields of human activities. However, their impact on living organisms, including microorganisms, still needs to be understood more profoundly. Some nanomaterials cause activating effects, others are characterized by toxicity. The action of nanomaterials on microorganisms is assessed by bringing them into mutual contact by chemical immobilization, sorption or other techniques and registering the caused effect. Changes of the bioelectrocatalytic characteristics—the main parameters of the electrodes (anodes or working cathodes) in such devices as biosensors or microbial fuel cells (MFC)—are widely used for assessment. These characteristics are studied by cyclic voltammetry, chronoamperometry and potentiometry as well as impedance spectroscopy. In this chapter, we briefly describe the effects of mainly carbon nanomaterials on microorganisms. Emphasis is made on presenting data obtained for Gluconobacter , which is used as the basis of biosensors and MFC and can be considered as model biomaterial.


Carbon nanomaterials Modification of graphite electrode Activating and toxic effects Immobilized Gluconobacter cells Bioelectrocatalytic testing Microbial fuel cell Biosensors 



The authors are grateful for the support by the Russian Science Foundation within the framework of the project “Design, Fabrication and Study of New Hybrid Integrated Sensors Based on Nanoelectronic, Acoustoelectronic and Electrochemical Technologies for Biological Applications” No. 18-49-08005.


  1. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRefGoogle Scholar
  2. Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70CrossRefGoogle Scholar
  3. Aslan S, Anik U (2016) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter oxydans and graphene oxide or graphene–platinum hybrid nanoparticles. Microchim Acta 183:73–81CrossRefGoogle Scholar
  4. Astruc D, Blais JC, Daniel MC, Gatard S, Nlate S, Ruiz J (2003) Metallodendrimers and dendronized gold colloids as nanocatalysts, nanosensors and nanomaterials for molecular electronics. C R Chim 6:1117–1127CrossRefGoogle Scholar
  5. Bard A, Faulkner L (2001) Electrochemical methods. In: Fundamentals and Application, 2nd ed. Wiley, New York, pp 368–414Google Scholar
  6. Bertokova A, Bertok T, Filip J, Tkáč J (2015) Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells. Chem Papers 69:27–41CrossRefGoogle Scholar
  7. Bianco A (2013) Graphene: safe or toxic? The two faces of the medal. Angew Chemie Int Ed 52:4986–4997CrossRefGoogle Scholar
  8. Busalmen JP, Esteve-Nunez A, Feliu JM (2008) Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ Sci Technol 42:2445–2450CrossRefGoogle Scholar
  9. Chang YT, Huang J-H, Tu MC, Chang P, Yew T-R (2013) Flexible direct-growth CNT biosensors. Biosens Bioelectron 41:898–902CrossRefGoogle Scholar
  10. Ci S, Cai P, Wen Z, Li J (2015) Graphene-based electrode materials for microbial fuel cells. Sci China Mater 58(6):496–509CrossRefGoogle Scholar
  11. Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed NBM 9:105–110CrossRefGoogle Scholar
  12. de Dios AS, Diaz-Garcia ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666:1–22CrossRefGoogle Scholar
  13. Dhas SP, Shiny PJ, Khan S, Mukherjee A, Chandrasekaran N (2014) Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J Basic Microbiol 54(9):916–927CrossRefGoogle Scholar
  14. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605CrossRefGoogle Scholar
  15. European Parliament and the Council of the European Union (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union L 276, vol. 53, pp 33–79Google Scholar
  16. Dong C, Li K, Jiang Y, Arola D, Zhang D (2018) Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry. Opt Express 26:531CrossRefGoogle Scholar
  17. Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP (2013) Electric impedance microflow cytometry for characterization of cell disease states. Lab Chip 13(19):3903–3909CrossRefGoogle Scholar
  18. Dubiak-Szepietowska M, Karczmarczyk A, Winckler T, Feller K-H (2016) A cell-based biosensor for nanomaterials cytotoxicity assessment in three dimensional cell culture. Toxicology 370:60–69CrossRefGoogle Scholar
  19. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880CrossRefGoogle Scholar
  20. Fogel R, Limson JL (2016) Applications of nanomaterials in microbial fuel cells. In: Ozoemena K, Chen S (eds) Nanomaterials for fuel cell catalysis. Nanostructure science and technology. Springer, Cham, pp 551–575Google Scholar
  21. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874CrossRefGoogle Scholar
  22. Fricke K, Harnisch F, Schroder U (2008) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci 1:144–147CrossRefGoogle Scholar
  23. Ghasemi M, Daud WRW, Hassan SHA, Ohc S-E, Ismail M, Rahimnejad M, Md Jahim J (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255CrossRefGoogle Scholar
  24. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controll Release 173:75–88CrossRefGoogle Scholar
  25. Gorshenev VN, Bibikov SB, Novikov YuN (2003) Conducting materials based on thermally expanded graphite. Russ J Appl Chem 76(4):603–606CrossRefGoogle Scholar
  26. Gupta S, Brouwer P, Bandyopadhyay S, Patil S, Briggs R, Jain J, Seal S (2005) TEM/AFM investigation of size and surface properties of nanocrystalline ceria. J Nanosci Nanotechnol 5(7):1101–1107CrossRefGoogle Scholar
  27. Habib O, Demirkol DO, Timur S (2012) Sol–gel/chitosan/gold nanoparticle-modified electrode in mediated bacterial biosensor. Food Anal Methods 5:188–194CrossRefGoogle Scholar
  28. Heinze J (1984) Cyclovoltammetrie—die “Spektroskopie” des Elektrochemikers. Angew Chem 96:823–840CrossRefGoogle Scholar
  29. Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403CrossRefGoogle Scholar
  30. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(2):105–127CrossRefGoogle Scholar
  31. Jiang W, Mashayekhi H, Xing BS (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollution 157:1619–1625CrossRefGoogle Scholar
  32. Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14(11):6737–6742CrossRefGoogle Scholar
  33. Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–7534CrossRefGoogle Scholar
  34. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653CrossRefGoogle Scholar
  35. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122CrossRefGoogle Scholar
  36. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084CrossRefGoogle Scholar
  37. Li L, Liang B, Li F, Shi JG, Mascini M, Lang QL, Liu A (2013) Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose. Biosens Bioelectron 42:156–162CrossRefGoogle Scholar
  38. Lim JW, Ha D, Lee J, Lee SK, Kim T (2015) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61Google Scholar
  39. Linazasoro G (2008) Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat Disord 14:383–392CrossRefGoogle Scholar
  40. Liu JJ, Li H, Zhang F, Li X, Wang L, Chen Y (2011) Online impedance monitoring of yeast cell culture behaviours. Microel Eng 88(8):1711–1713CrossRefGoogle Scholar
  41. Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang YH, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902CrossRefGoogle Scholar
  42. Logan BE, Hamelers B, Rozendal RA (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 17:5181–5191CrossRefGoogle Scholar
  43. Luo J, Chan WB, Wang L, Zhong CJ (2010) Probing interfacial interactions of bacteria on metal nanoparticles and substrates with different surface properties. Int J Antimicrob Agents 36(6):549–556CrossRefGoogle Scholar
  44. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171CrossRefGoogle Scholar
  45. Odaci D, Timur S, Telefoncu A (2009) A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry 75:77–82CrossRefGoogle Scholar
  46. Padmaraj D, Pande R, Miller JH, Wosik J, Zagozdzon-Wosik W (2014) Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring. PLoS ONE 9(7):e101793CrossRefGoogle Scholar
  47. Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRefGoogle Scholar
  48. Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10):426–432CrossRefGoogle Scholar
  49. Powers K, Palazuelos M, Moudgil B, Roberts S (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51CrossRefGoogle Scholar
  50. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:4811–4840CrossRefGoogle Scholar
  51. Reshetilov AN, Kitova AE, Kolesov VV, Yaropolov AI (2015) Mediator-free bioelectrocatalytic oxidation of ethanol on an electrode from thermally expanded graphite modified by Gluconobacter oxydans membrane fractions. Electroanalysis 27(6):1443–1448CrossRefGoogle Scholar
  52. Reshetilov AN, Plekhanova YV, Tarasov SE, Kitova AE, Uteshev VK, Vasilov RG, Kolesov VV (2016) Sposob poluchenia electricheskoi energii s pomoshiu mikrobnogo biotoplivnogo elementa implantirovannogo v organism zhivoi travyanoi lyagushki Rana Temporaria. RU Patent No. 2599421, 15 Sept 2016Google Scholar
  53. Reshetilov AN, Plekhanova JV, Tarasov SE, Bykov AG, Gutorov MA, Alferov SV, Tenchurin TK, Chvalun SN, Orekhov AS, Shepelev AD, Gotovtsev PM, Vasilov RG (2017a) Evaluation properties of bioelectrodes based on carbon superfine materials containing model microorganisms Gluconobacter. Nanotechnol Russ 12:107–115CrossRefGoogle Scholar
  54. Reshetilov AN, Plekhanova YV, Tarasov SE, Arlyapov VA, Kolesov VV, Gutorov MA, Gotovtsev PM, Vasilov RG (2017b) Effect of some carbon nanomaterials on ethanol oxidation by Gluconobacter oxydans bacterial cells. Appl Biochem Microbiol 53:123–129CrossRefGoogle Scholar
  55. Rozendal RA, Hamelers HM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211CrossRefGoogle Scholar
  56. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRefGoogle Scholar
  57. Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Papers 69:42–53Google Scholar
  58. Sefcovicova J, Filip J, Gemeiner P, Tkac J (2014) Nanomaterial-based microbial biosensor for detection of ethanol in real samples. J Biotechnol 185:S21CrossRefGoogle Scholar
  59. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074CrossRefGoogle Scholar
  60. Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72:257–262CrossRefGoogle Scholar
  61. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B and Carriere M (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429CrossRefGoogle Scholar
  62. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium-based, aqueous phase-synthesized quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25CrossRefGoogle Scholar
  63. Svitel J, Tkac J, Vostiar I, Navratil M, Stefuca V, Bucko M, Gemeiner P (2006) Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnol Lett 28:2003–2010CrossRefGoogle Scholar
  64. Talebi S, Ramezani F, Ramezani M (2010) Biosynthesis of metal nanoparticles by micro-organisms. Nanocon Olomouc 10:12–18Google Scholar
  65. Uskokovic V (2007) Nanotechnologies: what we do not know. Technol Soc 29:43–61CrossRefGoogle Scholar
  66. Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 84:519–550CrossRefGoogle Scholar
  67. Wang HW, Lang QL, Li L, Liang B, Tang XJ, Kong LG, Mascini M, Liu A (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application. Anal Chem 85:6107–6112CrossRefGoogle Scholar
  68. Weibel A, Bouchet R, Boulc’h F, Knauth P (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385CrossRefGoogle Scholar
  69. Yang CN, Mamouni J, Tang YG, Yang LJ (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019CrossRefGoogle Scholar
  70. Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26(2):135–150CrossRefGoogle Scholar
  71. Yazdi AA, D’Angelo L, Omer N, Windiasti G, Lu X, Xu J (2016) Carbon nanotube modification of microbial fuel cell electrodes. Biosens Bioelectron 85:536–538CrossRefGoogle Scholar
  72. Zhang YZ, Mo GQ, Li XW, Zhang W, Zhang JQ, Ye JS, Huang XD, Yu CZ (2011) A graphene-modified anode to improve the performance of microbial fuel cells. J Power Sources 196:5402–5407CrossRefGoogle Scholar
  73. Zou Y, Xiang C, Yang L, Sun L, Xu F, Cao Z (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy 33:4856–4862CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. N. Reshetilov
    • 1
    Email author
  • S. E. Tarasov
    • 1
  • Yu V. Plekhanova
    • 1
  1. 1.FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchinoRussia

Personalised recommendations