Advertisement

Toxicity and Safety Evaluation of Nanoclays

  • Adriano BrandelliEmail author
Chapter

Abstract

The term nanoclay is often associated to the natural clay minerals that contain silica and alumina as the main components. Nanoclays have been frequently incorporated into polymeric systems, resulting in nanocomposites that display a significant enhancement in barrier properties besides improved thermal and mechanical resistance. Recent studies describe the potential use of nanoclays as drug carriers and as modulators of drug release. Because of the increase in manufacturing of nanoclay-containing products, including an extensive array of industrial applications, information on the toxicological and health effects of nanoclay exposure is necessary. Methods conventionally used for evaluation of nanoparticles can be employed or adapted for toxicity evaluation of nanoclay materials. In vitro systems based on biochemical and cell culture methods and in vivo evaluation using lower organisms and animal models are used to access the potential toxicity of nanoclays. Most studies indicate that nanoclays are relatively safe and toxicity is often associated to nanoclay functionalized with organic modifiers.

Keywords

Montmorillonite Halloysite Toxicity evaluation Food packaging 

References

  1. Ahmed FR, Shoaib MH, Azhar M, Um SH, Yousuf RI, Hashmi S, Dar A (2015) In vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloid Surf B 135:50–55CrossRefGoogle Scholar
  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63CrossRefGoogle Scholar
  3. Alves OL, Moraes ACM, Simões MB, Fonseca LC, Nascimento RO, Holtz RD, Faria AF (2014) Nanomaterials. In: Durán N, Guterres SS, Alves OL (eds) Nanotoxicology—materials, methodologies and assessments. Springer Science+Business Media, New York, pp 1–29Google Scholar
  4. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49CrossRefGoogle Scholar
  5. Avella M, de Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MV (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  6. Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  7. Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69CrossRefGoogle Scholar
  8. Baek M, Lee AJ, Choi SJ (2012) Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol Cell Toxicol 8:95–101CrossRefGoogle Scholar
  9. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Progr Polym Sci 20:125–155CrossRefGoogle Scholar
  10. Brandelli A, Meira SMM (2017) Food packaging applications of renewable polymers incorporating nanocomposites. In: Inamuddin (ed) Green polymer composites technology. CRC Press, Boca Raton, pp 149–162Google Scholar
  11. Brandelli A, Brum LFW, Santos JHZ (2017a) Nanostructured bioactive compounds for ecological food packaging. Environ Chem Lett 15:193–204CrossRefGoogle Scholar
  12. Brandelli A, Lopes NA, Boelter JF (2017b) Food applications of nanostructured antimicrobials. In: Grumezescu AM (ed) Food preservation—Nanotechnology in the agri-food industry. Elsevier, Londres, pp 35–74Google Scholar
  13. Cazarin KCC, Corrêa CL, Zambrone FAD (2004) Redução, refinamento e substituição do uso de animais em estudos toxicológicos: uma abordagem atual. Braz J Pharm Sci 40:289–299Google Scholar
  14. Charão MF, Souto C, Brucker N, Barth A, Jornada DS, Fagundez D, Ávila DS, Eifler-Lima VL, Guterres SS, Pohlmann AR, Garcia SC (2015) Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomed 10:5093–5106CrossRefGoogle Scholar
  15. Dhawan A, Shanker R, Das M, Gupta KC (2011) Guidance for safe handling of nanomaterials. J Biomed Nanotechnol 7:218–224CrossRefGoogle Scholar
  16. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRefGoogle Scholar
  17. Echeverría I, Eisenberg P, Mauri AN (2014) Nanocomposites films based on soy proteins and montmorillonite processed by casting. J Membr Sci 449:15–26CrossRefGoogle Scholar
  18. Fakhrullin GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59CrossRefGoogle Scholar
  19. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591CrossRefGoogle Scholar
  20. Garcia SC, Guterres SS, Bubols GB, Bulcão RP, Charão MF, Pohlmann AR (2014) Polymeric nanoparticles: toxicological evaluation, cardiotoxicity and hepatotoxicity. In: Durán N, Guterres SS, Alves OL (eds) Nanotoxicology—materials, methodologies and assessments. Springer Science+Business Media, New York, pp 299–324Google Scholar
  21. German JB, Hammock BD, Watkins SM (2005) Metabolomics: building a century of biochemistry to guide human health. Metabolomics 1:3–9CrossRefGoogle Scholar
  22. Guo L, von dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727CrossRefGoogle Scholar
  23. Han C, Zhao A, Varughese E, Sahle-Demessie E (2018) Evaluating weathering of food packaging polyethylene-nanoclay composites: release of nanoparticles and their impacts. NanoImpact 9:61–71CrossRefGoogle Scholar
  24. Hatzigrigoriou NB, Papaspyrides CD (2011) Nanotechnology in plastic food-contact materials. J Appl Polym Sci 122:3720–3739CrossRefGoogle Scholar
  25. He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87:2706–2711CrossRefGoogle Scholar
  26. Hernández-Ortiz M, Acosta-Torres LS, Hernández-Padrón G, Mendieta AI, Bernal R, Cruz-Vázquez C, Castaño VM (2012) Biocompatibility of crystalline opal nanoparticles. Biomed Eng Online 11:78CrossRefGoogle Scholar
  27. Hillier S, Brydson R, Delbos E, Fraser T, Gray N, Pendlowski H, Phillips I, Robertson J, Wilson I (2016) Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Miner 51:325–350CrossRefGoogle Scholar
  28. Houtman J, Maisanaba S, Puerto M, Gutiérrez-Praena D, Jordá M, Aucejo S, Jos A (2014) Toxicity assessment of organomodified clays used in food contact materials on human target cell lines. Appl Clay Sci 90:150–158CrossRefGoogle Scholar
  29. Huang DJ, Wang WB, Kang YR, Wang AQ (2012) A chitosan/poly(vinyl alcohol) nanocomposite film reinforced with natural halloysite nanotubes. Polym Compos 33:1693–1699CrossRefGoogle Scholar
  30. Ibarguren C, Naranjo PM, Stötzel C, Audisio MC, Sham EL, Torres EMF, Müller FA (2014) Adsorption of nisin on raw montmorillonite. Appl Clay Sci 90:88–95CrossRefGoogle Scholar
  31. Isoda K, Nagata R, Hasegawa T, Taira Y, Taira I (2017) Hepatotoxicity and drug/chemical interaction toxicity of nanoclay particles in mice. Nanoscale Res Lett 12:199CrossRefGoogle Scholar
  32. Janer G, Fernández-Rosas E, Molino EM, González-Gálvez D, Villar G, López-Iglesias C, Ermini V, Vázquez-Campos S (2014) In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology 8:279–294CrossRefGoogle Scholar
  33. Kalra S, Pant CK, Pathak HD, Mehata MS (2003) Studies on the absorption of peptides of glycine/alanine on montmorillonite clay with or without co-ordinated divalet cations. Colloid Surfaces A 212:43–50CrossRefGoogle Scholar
  34. Kennedy S (2002) The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis. Biomarkers 7:269–290CrossRefGoogle Scholar
  35. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9CrossRefGoogle Scholar
  36. Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environm Sci Nano 3:442–452CrossRefGoogle Scholar
  37. Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22:611–617CrossRefGoogle Scholar
  38. Lai X, Agarwal M, Lvoy YM, Pachpande C, Varahamyan K, Witzmann FA (2013) Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316–1329PubMedPubMedCentralGoogle Scholar
  39. Lee JH, Song NB Jo WS, Song KB (2014) Effects of nano-clay type and content on the physical properties of sesame seed meal protein composite films. Int J Food Sci Technol 49:1869–1875CrossRefGoogle Scholar
  40. Liu Q, Li R, Zhu Z, Qian X, Guan W, Yu L, Yang M, Jiang X, Liu B (2012) Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. Int J Pharm 430:350–358CrossRefGoogle Scholar
  41. Lordan S, Kennedy JE, Higginbotham CL (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J Appl Toxicol 31:27–35CrossRefGoogle Scholar
  42. Lu L, Cai J, Frost RL (2010) Near infrared spectroscopy of stearic acid adsorbed on montmorillonite. Spectrochim Acta A 75:960–963CrossRefGoogle Scholar
  43. Lvov Y, Abdullayev E (2013) Functional polymer-clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719CrossRefGoogle Scholar
  44. Maisanaba S, Puerto M, Pichardo S, Jordá M, Moreno FJ, Aucejo S, Jos A (2013) In vitro toxicological assessment of clays for their use in food packaging applications. Food Chem Toxicol 57:266–275CrossRefGoogle Scholar
  45. Maisanaba S, Gutiérrez-Praena D, Pichardo S, Moreno FJ, Jordá M, Cameán AM, Aucejo S, Jos A (2014) Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. J Appl Toxicol 34:714–725CrossRefGoogle Scholar
  46. Maisanaba S, Pichardo S, Puerto M, Gutiérrez-Praena D, Cameán AM, Jos A (2015a) Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res 138:233–254CrossRefGoogle Scholar
  47. Maisanaba S, Prieto AI, Pichardo S, Jordá-Beneyto M, Aucejo S, Jos A (2015b) Cytotoxicity and mutagenicity assessment of organomodified clays potentially used in food packaging. Toxicol In Vitro 29:1222–1230CrossRefGoogle Scholar
  48. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:38–55CrossRefGoogle Scholar
  49. Meira SMM, Zehetmeyer G, Jardim AI, Scheibel JM, Oliveira RVB, Brandelli A (2014) Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol 7:3349–3357CrossRefGoogle Scholar
  50. Meira SMM, Jardim AI, Brandelli A (2015) Adsorption of nisin and pediocin on nanoclays. Food Chem 188:161–169CrossRefGoogle Scholar
  51. Meira SMM, Zehetmeyer G, Scheibel JM, Werner JO, Brandelli A (2016) Starch-halloysite nanocomposites containing nisin: characterization and inhibition of Listeria monocytogenes in soft cheese. LWT Food Sci Technol 68:226–234CrossRefGoogle Scholar
  52. Møller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S (2012) Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med 11:732–745CrossRefGoogle Scholar
  53. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47CrossRefGoogle Scholar
  54. Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AM, Cunha A, Almeida A, Gomes NC, Pereira R (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350CrossRefGoogle Scholar
  55. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  56. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Progr Polym Sci 33:1119–1198CrossRefGoogle Scholar
  57. Raldúa D, Piña B (2014) In vivo zebrafish assays for analyzing drug toxicity. Expert Opin Drug Metabol Toxicol 10:685–697CrossRefGoogle Scholar
  58. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295Google Scholar
  59. Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res 16:2464CrossRefGoogle Scholar
  60. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Progr Polym Sci 38:1629–1652CrossRefGoogle Scholar
  61. Rubenstein AL (2006) Zebrafish assays for drug toxicity screening. Expert Opin Drug Metabol Toxicol 2:231–240CrossRefGoogle Scholar
  62. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512CrossRefGoogle Scholar
  63. Schmitt H, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydr Polym 89:920–927CrossRefGoogle Scholar
  64. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180CrossRefGoogle Scholar
  65. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:552–565CrossRefGoogle Scholar
  66. Song NB, Jo WS, Song HY, Chung KS Won M, Song KB (2013) Effects of plasticizers and nano-clay content on the physical properties of chicken feather protein composite films. Food Hydrocoll 31:340–345CrossRefGoogle Scholar
  67. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 14:9–20Google Scholar
  68. Stueckle TA, Davidson DC, Derk R, Kornberg TG, Battelli L, Friend S, Orandle M, Wagner A, Dinu CZ, Sierros KA, Agarwal S, Gupta RK, Rojanasakul Y, Porter DW, Rojanasakul L (2018) Short-term pulmonary toxicity assessment of pre- and post-incinerated organomodified nanoclay in mice. ACS Nano 12:2292–2310CrossRefGoogle Scholar
  69. Turco RF, Bischoff M, Tong ZH, Nies L (2011) Environmental implications of nanomaterials: are we studying the right thing? Curr Opin Biotechnol 22:527–532CrossRefGoogle Scholar
  70. Unalan UI, Cerri G, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4:29393–29428CrossRefGoogle Scholar
  71. Vanderroost M, Ragaert P, Devlieghere P, de Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62CrossRefGoogle Scholar
  72. Wagner A, Eldawud R, White A, Agarwal S, Stueckle TA, Sierros KA, Rojanasakul Y, Gupta RK, Dinu CZ (2017a) Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim Biophys Acta 1861:3406–3415CrossRefGoogle Scholar
  73. Wagner A, White AP, Stueckle TA, Banerjee D, Sierros KA, Tojanasakul Y, Agarwal S, Gupta RK, Dinu CZ (2017b) Early assessment and correlations of nanoclay’s toxicity to their physical and chemical properties. ACS Appl Mater Interfaces 20:32323–32335CrossRefGoogle Scholar
  74. Zhang Y, Chen D, Ennis AC, Polli JR, Xiao P, Zhang B, Stellwag EJ, Overton A, Pan X (2013) Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans. Arch Toxicol 87:371–382CrossRefGoogle Scholar
  75. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centro de Nanociência e NanotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations