Advertisement

Nanomaterials: Toxicity, Risk Managment and Public Perception

  • Bushra JamilEmail author
  • Rabia Javed
  • Asma Saleem Qazi
  • Muhammad Ali Syed
Chapter

Abstract

It is believed that the future of medicine lies in nanotechnology where the medicines would be tailor-made according to the requirement of the individual. With the amassed recognition of the potential of nanomaterials they are not only used in medicines but in many other consumer products. Nanomaterials exists in nature everywhere and many others are engineered. Because of the omnipresence of these nanoparticles human beings are blatantly exposed to them. Nevertheless, our knowledge about health and environmental risks of these engineered nanomaterials still remains limited and largely incomplete. Many studies confer their toxicity in animal models where they can lead to teratogenicity, genotoxicity and also defects in organs like liver, lungs, kidneys and immune system. However, the toxic responses depends upon many variables including size, shape, charge, composition and surface area. Nanoparticles (NPs) of same compositions can diverge in term of toxicity by changing the size, shape and charge of NPs. Likewise the time of exposure also plays very vita role in toxicity. Many available studies provide incomplete information by conducting few in vitro analyses. However, the process is so intricate that the in vitro studies are not sufficient to provide enough information to elucidate the full toxic potential. Therefore, in vivo studies are pre-requisite. This chapter provides an insight from toxicologist`s perspective on the matter, outlining possible routes of uptake by humans, known or suspected toxic effects, and the possible practical implication for human health risk assessment and public perception.

Keywords

Nano-toxicity Risk assessment Public perception Nano-particles 

Nomenclature

NP

Nano-particles

UFP

Ultra Fine Particles

QSAR

Quantitative Structure Activity Relationship

LDH

Lactate Dehydrogenase

nm

Nanometer

TiO2

Titanium Oxide

TNF

Tumor Necrosis Factor

SiO2

Silicon Dioxide

Ni NPs

Nickel Nano-particles

Co NPs

Cobalt Nano-particles

IL

Interleukin

Au

Gold

Ag

Silver

Si NPs

Silicon Nano-particles

PBS

Phosphate-buffered Saline

BBB

Blood Brain Barrier

CNS

Central Nervous System

FDA

Food and Drug Administration

References

  1. Ahmad J, Ahamed M, Akhtar MJ, Alrokayan SA, Siddiqui MA, Musarrat J, Al-Khedhairy AA (2012) Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259:160–168PubMedCrossRefGoogle Scholar
  2. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) nanomaterials physiochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alkilany AM, Frey RL, Ferry JL, Murphy CJ (2008) Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 24:10235–10239PubMedCrossRefGoogle Scholar
  4. Allegri M, Bianchi MG, Chiu M, Varet J, Costa AL, Ortelli S, Blosi M, Bussolati O, Poland CA, Bergamaschi E (2016) Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE 11:e0151365PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson DS, Silva RM, Lee D, Edwards PC, Sharmah A, Guo T, Pinkerton KE, Van Winkle LS (2015) Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9:591–602PubMedCrossRefGoogle Scholar
  6. Andersson POLC, Ekstrand-Hammarstrom B, Akfur C, Ahlinder L, Bucht A, Osterlund L (2011) Polymorph- and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7:514–523PubMedCrossRefGoogle Scholar
  7. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014) Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol 30:89–100PubMedCrossRefGoogle Scholar
  8. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114PubMedCrossRefGoogle Scholar
  9. Barnard AS (2006) Nanohazards: knowledge is our first defence. Nat Mater 5:245PubMedCrossRefGoogle Scholar
  10. Barnes AL, Wassel RA, Mondale F, Chen K, Dormer KL, Kopke RD (2007) Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. BioMagn Res Technol 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3(1–2)CrossRefGoogle Scholar
  12. Boogaard H, Kos GP, Weijers EP, Janssen NA, Fischer PH, van der Zee SC, de Hartog JJ, Hoek G (2011) Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos Environ 45:650–658CrossRefGoogle Scholar
  13. Borm PJ, Cakmak G, Jermann E, Weishaupt C, Kempers P, van Schooten FJ, Oberdörster G, Schins RP (2005) Formation of PAH–DNA adducts after in vivo and vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicol Appl Pharmacol 205:157–167PubMedCrossRefGoogle Scholar
  14. Bouallegui Y, Ben Younes R, Turki F, Oueslati R (2017) Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis. J Immunotoxicol 14:116–124PubMedCrossRefGoogle Scholar
  15. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150PubMedCrossRefGoogle Scholar
  16. Bowden LP, Royer MC, Hallman JR, Lewin-Smith M, Lupton GP (2011) Rapid onset of argyria induced by a silver-containing dietary supplement. J Cutan Pathol 38:832–835PubMedGoogle Scholar
  17. Braakhuis HM, Cassee FR, Fokkens PH, De La Fonteyne LJ, Oomen AG, Krystek P, De Jong WH, Van Loveren H, Park MV (2016) Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology 10:63–73PubMedCrossRefGoogle Scholar
  18. Chatterjee R (2009) Calculating the costs of nanohazard testing. ACS Publications, pp 3405–3405Google Scholar
  19. Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen Z, Sheng X, Wang J, Wen Y (2018) Silver nanoparticles or free silver ions work? An enantioselective phytotoxicity study with a chiral tool. Sci Total Environ 610:77–83PubMedCrossRefGoogle Scholar
  21. Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong J (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183PubMedCrossRefGoogle Scholar
  22. Choi J, Zheng Q, Katz HE, Guilarte TR (2010) Silica-based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118:589–595PubMedCrossRefGoogle Scholar
  23. Chulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev (Suppl 1):S157–163Google Scholar
  24. De Domenico I, Ward DM, Kaplan J (2007) Hepcidin regulation: ironing out the details. J Clin Investig 117:1755–1758PubMedCrossRefGoogle Scholar
  25. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133CrossRefGoogle Scholar
  26. Dekkers S, Bouwmeester H, Bos PM, Peters RJ, Rietveld AG, Oomen AG (2013) Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology 7:367–377PubMedCrossRefGoogle Scholar
  27. Dekkers S, Oomen AG, Bleeker EA, Vandebriel RJ, Micheletti C, Cabellos J, Janer G, Fuentes N, Vázquez-Campos S, Borges T, Silva MJ (2016) Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol 80:46–59PubMedCrossRefGoogle Scholar
  28. Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen DL, George SC, Shafer MM, Schauer JJ, Sioutas C (2016) Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology (Cambridge, Mass) 21(6)PubMedCrossRefGoogle Scholar
  29. Demir E, Castranova V (2016) Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol Rep 3:807–815PubMedPubMedCentralCrossRefGoogle Scholar
  30. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18PubMedCrossRefGoogle Scholar
  31. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605CrossRefGoogle Scholar
  32. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469PubMedCrossRefGoogle Scholar
  34. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220PubMedCrossRefGoogle Scholar
  35. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Particle Fibre Toxicol 2:10CrossRefGoogle Scholar
  36. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137PubMedCrossRefGoogle Scholar
  37. Exbrayat JM, Moudilou EN and Lapied E (2015) Harmful effects of nanoparticles on animals. J NanotechnolGoogle Scholar
  38. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591CrossRefGoogle Scholar
  39. Gaskell G, Eyck TT, Jackson J, Veltri G (2005) Imagining nanotechnology: cultural support for technological innovation in Europe and the United States. Pub Underst Sci 14(1):81–90Google Scholar
  40. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. http://dx.doi.org/10.1155/2014/498420
  41. Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376PubMedCrossRefGoogle Scholar
  42. Georgieva JV, Kalicharan D, Couraud PO, Romero IA, Weksler B, Hoekstra D, Zuhorn IS (2011) Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol Ther 19:318–325PubMedCrossRefGoogle Scholar
  43. Goulaouic S, Foucaud L, Bennasroune A, Laval-Gilly P, Falla J (2008) Effect of polycyclic aromatic hydrocarbons and carbon black particles on pro-inflammatory cytokine secretion: impact of PAH coating onto particles. J Immunotoxicol 5:337–345PubMedCrossRefGoogle Scholar
  44. Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Gao G, Cheng Z (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370PubMedCrossRefGoogle Scholar
  45. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936PubMedCrossRefGoogle Scholar
  47. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:12CrossRefGoogle Scholar
  48. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994PubMedCrossRefGoogle Scholar
  49. Hsiao I, Huang Y (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228PubMedCrossRefGoogle Scholar
  50. Jania P, McCarthya D, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168CrossRefGoogle Scholar
  51. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119CrossRefGoogle Scholar
  52. Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J NanotechnolGoogle Scholar
  53. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174PubMedCrossRefGoogle Scholar
  54. Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17:140–152PubMedCrossRefGoogle Scholar
  55. Kuempel ED, Geraci CL, Schulte PA (2012) Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Annals Occup Hyg 56:491–505Google Scholar
  56. L’Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Cambar J, Brochard P, Ohayon-Courtès C (2008) In vitro effects of nanoparticles on renal cells. Particle Fibre Toxicol 5:22CrossRefGoogle Scholar
  57. Lee S, Yun HS, Kim SH (2011) The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32:9434–9443PubMedCrossRefGoogle Scholar
  58. Lin MM, Kim HH, Kim H, Dobson J, Kim DK (2010) Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy. Nanomed 5(1):109–133PubMedCrossRefGoogle Scholar
  59. Liu A, Ye B (2013) Application of gold nanoparticles in biomedical researches and diagnosis. Clin Lab 8:23–36Google Scholar
  60. Liu S, Wang C, Hou J, Wang P, Miao L, Fan X, You G, Xu Y (2018) Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res 137:28–36PubMedCrossRefGoogle Scholar
  61. Lu X, Zhu T, Chen C, Liu Y (2014) Right or left: the role of nanoparticles in pulmonary diseases. Int J Mol Sci 15:17577–17600PubMedPubMedCentralCrossRefGoogle Scholar
  62. Maynard A (2006) Nanotechnology: a research strategy for addressing risk. Nanotechnologies, Woodrow Wilson International Center for Scholars Project on Emerging. Washington DCGoogle Scholar
  63. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976PubMedCrossRefPubMedCentralGoogle Scholar
  64. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2:129Google Scholar
  65. Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefGoogle Scholar
  68. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M, Mitragotri S, Muzykantov V (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE 11(3):e0152074PubMedPubMedCentralCrossRefGoogle Scholar
  70. Park EJ, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25PubMedCrossRefGoogle Scholar
  71. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168PubMedCrossRefGoogle Scholar
  72. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423PubMedCrossRefGoogle Scholar
  73. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83PubMedCrossRefGoogle Scholar
  74. Schmid O, Stoeger T (2016) Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci 99:133–143CrossRefGoogle Scholar
  75. Schulte PA, Geraci CL, Hodson LL, Zumwalde RD, Kuempel ED, Murashov V, Martinez KF, Heidel DS (2013) Overview of risk management for engineered nanomaterials. J Phys Conf Ser 429Google Scholar
  76. Schuppan D, Schattenberg JM (2013) Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 28:68–76PubMedCrossRefGoogle Scholar
  77. Scott-Fordsmand JJ, Peignenburg WJGM, Semenzin E, Novack B, Hunt N, Hristozov D, Marcomini A, Irfan M-A, Jimenez AS, Landsiedel R, Tran L, Oomen AG, Bos PMJ, Hund-Rinke K (2017) Environmental risk assessment strategy for nanomaterials. Int J Environ Res Public Health 14:1251PubMedCentralCrossRefPubMedGoogle Scholar
  78. Seaton A, Tran L, Aitken R, Donaldson K (2009) Nanoparticles, human health hazard and regulation. J Roy Soc Interface 7(Suppl 1):S119–S129Google Scholar
  79. Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M (2010) Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 35:107–113PubMedCrossRefGoogle Scholar
  80. Sharma M (2010) Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: a systemic review. Indian J Occup Environ Med 14(1):3–5PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shimida A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into blood circulation in the mouse. Toxicol Pathol 34:949–957CrossRefGoogle Scholar
  82. Subbenaik SC (2016) Physical and chemical nature of nanoparticles. In: Plant nanotechnology. Springer, Cham, pp 15–27CrossRefGoogle Scholar
  83. Tinkle SS, Antonini JM, Rich BA, Robert JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208PubMedPubMedCentralCrossRefGoogle Scholar
  84. Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL (2012) Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol C: Toxicol Pharmacol 8:269–274Google Scholar
  85. Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-W, Warheit DB, Santmaria AB (2005) Research strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles. Toxicol Sci 89:42–50PubMedCrossRefGoogle Scholar
  86. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J (2007a) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185PubMedCrossRefGoogle Scholar
  88. Wang JJ, Sanderson BJ, Wang H (2007b) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106PubMedCrossRefGoogle Scholar
  89. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241PubMedCrossRefGoogle Scholar
  90. Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087PubMedCrossRefGoogle Scholar
  91. Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826PubMedCrossRefGoogle Scholar
  92. Zhang WL, Yu WW, Vicki LC, Monteiro-Riviere NA (2008) Biological interactions of quantum dot NPs in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bushra Jamil
    • 1
    Email author
  • Rabia Javed
    • 1
  • Asma Saleem Qazi
    • 1
  • Muhammad Ali Syed
    • 2
  1. 1.Department of Bio-SciencesNational University of Medical SciencesThe Mall, RawalpindiPakistan
  2. 2.Department of MicrobiologyUniversity of HaripurHaripurPakistan

Personalised recommendations