Advertisement

Nanoparticles Emitted by Biomass Burning: Characterization and Monitoring of Risks

  • Maria Angélica M. Costa
  • Henrique M. Fogarin
  • Ana F. M. Costa
  • Lorena O. Pires
  • Débora D. V. Silva
  • Michele Lima-Souza
  • Kelly J. DussánEmail author
Chapter

Abstract

Using biomass (e.g. sugarcane bagasse) as biofuel in industries and distilleries is already well known and has recently been increasingly more utilized to produce heat and energy, thus emissions from burning this fuel have reached local and global populations. Biomass burning in general is the major anthropogenic source of many air pollutants. Environmental assessments must be carried out frequently and should consider not only burning fields, which are still recurrent, but also the use of bagasse as fuel, its emissions and the control in industry, taking into account air quality and harmful effects on health. In order to evaluate the atmospheric changes and the effect of the compounds emitted during biomass combustion on human health, particulate matter (PM) emission control and characterization must be carried out. Particles emitted by biomass burning have varied compositions, including organic, inorganic as well as elemental carbon. These analyses can identify different emission sources, such as fixed sources, air mass trajectories and quantification of open burning. However, ambient air quality standards should be reassessed, including the effects of ultrafine particulate matter (nanoparticles) and solutions should be sought to reduce the concentration of these materials in the atmosphere and hence improve public health.

Keywords

Biomass Burning Emission Characterization Deposition Air quality 

Notes

Acknowledgements

The authors are grateful to FAPESP—São Paulo Research Foundation (grant numbers #2016/23209-0 and #2018/00697-5)

References

  1. Alves C (2005) Aerossóis atmosféricos: perspectiva histórica, fontes, processos químicos de formação e composição orgânica. Quim Nova 28:859–870CrossRefGoogle Scholar
  2. Alves CA, Gonçalves C, Pio CA, Mirante F, Caseiro A, Tarelho L, Freitas MC, Viegas DX (2010) Smoke emissions from biomass burning in a Mediterranean shrubland. Atmos Environ 44(25):3024–3033.  https://doi.org/10.1016/j.atmosenv.2010.05.010CrossRefGoogle Scholar
  3. Alves DKM, Kummrow F, Cardoso AA, Morales DA, Umbuzeiro GA (2016) Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning. Environ Mol Mutagen 57(1):41–50.  https://doi.org/10.1002/em.21970CrossRefPubMedGoogle Scholar
  4. Andreae MO (2007) Aerosols before pollution. Science 315(5808):50–51.  https://doi.org/10.1126/science.1136529CrossRefPubMedGoogle Scholar
  5. Arbex MA, Cançado JED, Pereira LAA, Braga ALF, Saldiva PHdN (2004) Queima de biomassa e efeitos sobre a saúde. J Bras Pneumol 30:158–175CrossRefGoogle Scholar
  6. Aurell J, Gullett BK, Tabor D (2015) Emissions from southeastern U.S. Grasslands and pine savannas: comparison of aerial and ground field measurements with laboratory burns. Atmos Environ 111:170–178.  https://doi.org/10.1016/j.atmosenv.2015.03.001CrossRefGoogle Scholar
  7. Badarinath KVS, Kumar Kharol S, Rani Sharma A (2009) Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. J Atmos Solar Terr Phys 71(1):112–120.  https://doi.org/10.1016/j.jastp.2008.09.035CrossRefGoogle Scholar
  8. Barnaba F, Angelini F, Curci G, Gobbi GP (2011) An important fingerprint of wildfires on the European aerosol load. Atmos Chem Phys 11(20):10487–10501.  https://doi.org/10.5194/acp-11-10487-2011CrossRefGoogle Scholar
  9. Bo Y, Cai H, Xie SD (2008) Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmos Chem Phys 8:7297–7316.  https://doi.org/10.5194/acp-8-7297-2008CrossRefGoogle Scholar
  10. Bougiatioti A, Bezantakos S, Stavroulas I, Kalivitis N, Kokkalis P, Biskos G, Mihalopoulos N, Papayannis A, Nenes A (2016) Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmos Chem Phys 16(11):7389–7409.  https://doi.org/10.5194/acp-16-7389-2016CrossRefGoogle Scholar
  11. Brito J, Rizzo LV, Morgan WT, Coe H, Johnson B, Haywood J, Longo K, Freitas S, Andreae MO, Artaxo P (2014) Ground-based aerosol characterization during the South American biomass burning analysis (SAMBBA) field experiment. Atmos Chem Phys 14:12069–12083.  https://doi.org/10.5194/acp-14-12069CrossRefGoogle Scholar
  12. Buseck PR, Adachi K (2008) Nanoparticles in the atmosphere. Elements 4(6):389–394.  https://doi.org/10.2113/gselements.4.6.389CrossRefGoogle Scholar
  13. Cabada JC, Rees S, Takahama S, Khlystov A, Pandis SN, Davidson CI, Robinson AL (2004) Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmos Environ 38(20):3127–3141.  https://doi.org/10.1016/j.atmosenv.2004.03.004CrossRefGoogle Scholar
  14. Cacuro TA, Waldman WR (2015) Cinzas da Queima de Biomassa: Aplicações e Potencialidades. Revista Virtual Quimica 7(6):2154–2165CrossRefGoogle Scholar
  15. Caetano-Silva L, Allen AG, Lima-Souza M, Cardoso AA, Campos MLAM, Nogueira RFP (2013) An analysis of diurnal cycles in the mass of ambient aerosols derived from biomass burning and agro-industry. J Geophys Res Atmos 118(15):8675–8687.  https://doi.org/10.1002/jgrd.50630CrossRefGoogle Scholar
  16. Calec N, Boyer P, Anselmet F, Amielh M, Branger H, Mailliat A (2017) Dry deposition velocities of submicron aerosols on water surfaces: laboratory experimental data and modelling approach. J Aerosol Sci 105:179–192.  https://doi.org/10.1016/j.jaerosci.2016.11.012CrossRefGoogle Scholar
  17. Calfapietra C, Morani A, Sgrigna G, Di Giovanni S, Muzzini V, Pallozzi E, Guidolotti G, Nowak D, Fares S (2016) Removal of ozone by urban and peri-urban forests: evidence from laboratory, field, and modeling approaches. J Environ Qual 45(1):224–233.  https://doi.org/10.2134/jeq2015.01.0061CrossRefPubMedGoogle Scholar
  18. Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28.  https://doi.org/10.1016/j.atmosres.2012.09.021CrossRefGoogle Scholar
  19. Cape JN, Cornell SE, Jickells TD, Nemitz E (2011) Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods. Atmos Res 102(1):30–48.  https://doi.org/10.1016/j.atmosres.2011.07.009CrossRefGoogle Scholar
  20. Carrico CM, Prenni AJ, Kreidenweis SM, Levin EJT, McCluskey CS, DeMott PJ, McMeeking GR, Nakao S, Stockwell C, Yokelson RJ (2016) Rapidly evolving ultrafine and fine mode biomass smoke physical properties: comparing laboratory and field results. J Geophys Res Atmos 121(10):5750–5768.  https://doi.org/10.1002/2015JD024389CrossRefGoogle Scholar
  21. Carvalho JA Jr, Lacava PT (2003) Emissões em processos de combustão. Editora Unesp, Sao PauloGoogle Scholar
  22. CETESB (1990) Dutos e Chaminés de Fontes Estacionárias - Determinação dos Pontos de Amostragem - L9.221. Companhia Ambiental do Estado de São Paulo http://www.esaat.com.br/docs/met_cetesb/CETESB-L9.221.pdf. Accessed 21 March 2018
  23. Chakrabarty RK, Gyawali M, Yatavelli RLN, Pandey A, Watts AC, Knue J, Chen L-WA, Pattison RR, Tsibart A, Samburova V, Moosmüller H (2016) Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing. Atmos Chem Phys 16:3033–3040.  https://doi.org/10.5194/acp-16-3033-2016CrossRefGoogle Scholar
  24. Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, Guo H, Fu H, Miljevic B, Morawska L, Thai P, Lam YF, Pereira G, Ding A, Huang X, Dumka UC (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034.  https://doi.org/10.1016/j.scitotenv.2016.11.025CrossRefPubMedGoogle Scholar
  25. Cieslinski JEF (2014) Estudo da emissão e do controle dos gases e particulados provenientes da queima de biomassa. Doctorate degree, Universidade Estadual Paulista “Júlio de Mesquita Filho”, GuaratinguetaGoogle Scholar
  26. Costa MAM (1998) Amostragem de partículas dispersas em correntes gasosas confinadas. Universidade Estadual de Maringá, Maringá, Master degreeGoogle Scholar
  27. De Nevers N (1995) Air pollution control engineering. McGraw-Hill, New York; SingaporeGoogle Scholar
  28. Dhammapala R, Claiborn C, Simpson C, Jimenez J (2007) Emission factors from wheat and Kentucky bluegrass stubble burning: comparison of field and simulated burn experiments. Atmos Environ 41(7):1512–1520.  https://doi.org/10.1016/j.atmosenv.2006.10.008CrossRefGoogle Scholar
  29. Ding AJ, Fu CB, Yang XQ, Sun JN, Petäjä T, Kerminen V-M, Wang T, Xie Y, Herrmann E, Zheng LF, Nie W, Liu Q, Wei XL, Kulmala M (2013) Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys 13:10545–10554.  https://doi.org/10.5194/acp-13-10545-2013CrossRefGoogle Scholar
  30. Ding K, Liu J, Ding A, Liu Q, Zhao TL, Shi J, Han Y, Wang H, Jiang F (2015) Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia. Atmos Chem Phys 15(5):2843–2866.  https://doi.org/10.5194/acp-15-2843-2015CrossRefGoogle Scholar
  31. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10.  https://doi.org/10.1186/1743-8977-2-10CrossRefPubMedPubMedCentralGoogle Scholar
  32. Du H, Kong L, Cheng T, Chen J, Du J, Li L, Xia X, Leng C, Huang G (2011) Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos Environ 45(29):5131–5137.  https://doi.org/10.1016/j.atmosenv.2011.06.027CrossRefGoogle Scholar
  33. Ferge T, Maguhn J, Hafner K, Mühlberger F, Davidovic M, Warnecke R, Zimmermann R (2005) On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor. Environ Sci Technol 39(6):1393–1402.  https://doi.org/10.1021/es049493oCrossRefPubMedGoogle Scholar
  34. Finlayson-Pitts BJ, Pitts Jr JN (2000a) Particles in the troposphere. In: Chemistry of the upper and lower atmosphere. Academic Press, San Diego, pp 349–435.  https://doi.org/10.1016/B978-012257060-5/50011-3CrossRefGoogle Scholar
  35. Finlayson-Pitts BJ, Pitts Jr JN (2000b) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press, San DiegoCrossRefGoogle Scholar
  36. Fu H, Zhang M, Li W, Chen J, Wang L, Quan X, Wang W (2012) Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai, vol 12.  https://doi.org/10.5194/acp-12-693-2012CrossRefGoogle Scholar
  37. Fullerton D, Bruce N, Gordon S (2008) Indoor air pollution from biomass fuel is a major health concern in the developing world, vol 102.  https://doi.org/10.1016/j.trstmh.2008.05.028CrossRefGoogle Scholar
  38. George M, Suhail S, Chandran S, Chen J, Lu K, Ruth A, Venables D, Varma R (2016) Open-path in situ measurement of the nitrate radical concentrations during the CAREBeijing-NCP 2014 summer campaign. In: EGU general assembly conference abstracts. http://adsabs.harvard.edu/abs/2016EGUGA.1812189G. Accessed 05 April 2018
  39. Giardina M, Buffa P (2018) A new approach for modeling dry deposition velocity of particles. Atmos Environ 180:11–22.  https://doi.org/10.1016/j.atmosenv.2018.02.038CrossRefGoogle Scholar
  40. Giglio L, Randerson JT, Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeosci 118(1):317–328.  https://doi.org/10.1002/jgrg.20042CrossRefGoogle Scholar
  41. Guan H, Esswein R, Lopez J, Bergstrom R, Warnock A, Follette-Cook M, Fromm M, Iraci LT (2010) A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos Chem Phys 10(14):6461–6469.  https://doi.org/10.5194/acp-10-6461-2010CrossRefGoogle Scholar
  42. Guo H, Wang T, Simpson I, Blake DR, Yu XM, Kwok YH, Li YS (2004) Source contributions to ambient VOCs and CO at a rural site in Eastern China, vol 38.  https://doi.org/10.1016/j.atmosenv.2004.05.004CrossRefGoogle Scholar
  43. Han YM, Lee SC, Cao JJ, Ho KF, An ZS (2009) Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos Environ 43(38):6066–6073.  https://doi.org/10.1016/j.atmosenv.2009.08.018CrossRefGoogle Scholar
  44. Harrison RM (1999) Introduction. In: Harrison RM (ed) Understanding our environment: an introduction to environmental chemistry and pollution, 3rd edn. The royal society of chemistry. Cambridge. http://dx.doi.org/10.1039/9781847552235-00001
  45. Harrison RM, Hester RE (2009) Air quality in urban environments. Royal society of chemistry, London, UK.  https://doi.org/10.1039/9781847559654Google Scholar
  46. Hays MD, Geron CD, Linna KJ, Smith ND, Schauer JJ (2002) Speciation of gas-phase and fine particle emissions from burning of foliar fuels. Environ Sci Technol 36(11):2281–2295.  https://doi.org/10.1021/es0111683CrossRefPubMedGoogle Scholar
  47. Hedberg E, Kristensson A, Ohlsson M, Johansson C, Johansson P-Å, Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36(30):4823–4837.  https://doi.org/10.1016/S1352-2310(02)00417-XCrossRefGoogle Scholar
  48. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Michigan UniversityGoogle Scholar
  49. Ho KF, Lee SC, Ho SSH, Kawamura K, Tachibana E, Cheng Y, Zhu T (2010) Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 campaign of air quality research in Beijing (CAREBeijing-2006). J Geophys Res Atmos 115:(D19).  https://doi.org/10.1029/2009JD013304CrossRefGoogle Scholar
  50. Hu W, Hu M, Hu WW, Niu H, Zheng J, Wu Y, Chen W, Chen C, Li L, Shao M, Xie S, Zhang Y (2016) Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmos Chem Phys 16(20):13213–13230.  https://doi.org/10.5194/acp-16-13213-2016CrossRefGoogle Scholar
  51. Huang C-W, Launiainen S, Grönholm T, Katul GG (2014) Particle deposition to forests: an alternative to K-theory. Atmos Environ 94:593–605.  https://doi.org/10.1016/j.atmosenv.2014.05.072CrossRefGoogle Scholar
  52. Huang X-F, He L-Y, Xue L, Sun T-L, Zeng L-W, Gong Z-H, Hu M, Zhu T (2012) Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmos Chem Phys 12:4897–4907.  https://doi.org/10.5194/acp-12-4897-2012CrossRefGoogle Scholar
  53. Huo J, Lu X, Wang X, Chen H, Ye X, Gao S, Gross DS, Chen J, Yang X (2016) Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement. Front Environ Sci Eng 10(2):244–252.  https://doi.org/10.1007/s11783-015-0768-zCrossRefGoogle Scholar
  54. Jaffe DA, Wigder NL (2012) Ozone production from wildfires: a critical review. Atmos Environ 51:1–10.  https://doi.org/10.1016/j.atmosenv.2011.11.063CrossRefGoogle Scholar
  55. Janhäll S (2015) Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos Environ 105:130–137.  https://doi.org/10.1016/j.atmosenv.2015.01.052CrossRefGoogle Scholar
  56. Kantová N, Holubčík M, Jandačka J, Čaja A (2017) Comparison of particulate matters properties from combustion of wood biomass and brown coal. Procedia Eng 192:416–420.  https://doi.org/10.1016/j.proeng.2017.06.072CrossRefGoogle Scholar
  57. Karanasiou A, Minguillón MC, Viana M, Alastuey A, Putaud JP, Maenhaut W, Panteliadis P, Močnik G, Favez O, Kuhlbusch TAJ (2015) Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos Meas Tech Discuss 2015:9649–9712.  https://doi.org/10.5194/amtd-8-9649-2015CrossRefGoogle Scholar
  58. Kaskaoutis DG, Gautam R, Singh RP, Houssos EE, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu NC, Holben BN, Takemura T (2012) Influence of anomalous dry conditions on aerosols over India: transport, distribution and properties. J Geophys Res Atmos 117:(D9).  https://doi.org/10.1029/2011JD017314CrossRefGoogle Scholar
  59. Kaul DS, Gupta T, Tripathi SN, Tare V, Collett JL (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45(17):7307–7313.  https://doi.org/10.1021/es201081dCrossRefPubMedGoogle Scholar
  60. Kittelson DB, Watts WF, Johnson JP (2004) Nanoparticle emissions on Minnesota highways. Atmos Environ 38(1):9–19.  https://doi.org/10.1016/j.atmosenv.2003.09.037CrossRefGoogle Scholar
  61. Koppmann R, von Czapiewski K (2005) A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos Chem Phys Discuss 5:10455–10516.  https://doi.org/10.5194/acpd-5-10455-2005CrossRefGoogle Scholar
  62. Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, Hoboken.  https://doi.org/10.1002/9781118001684CrossRefGoogle Scholar
  63. Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ 117:9–18.  https://doi.org/10.1016/j.atmosenv.2015.06.058CrossRefGoogle Scholar
  64. Kumar P, Pirjola L, Ketzel M, Harrison RM (2013) Nanoparticle emissions from 11 non-vehicle exhaust sources: a review. Atmos Environ 67:252–277.  https://doi.org/10.1016/j.atmosenv.2012.11.011CrossRefGoogle Scholar
  65. Lai LY, Sequeira R (2001) Visibility degradation across Hong Kong: its components and their relative contributions. Atmos Environ 35(34):5861–5872.  https://doi.org/10.1016/S1352-2310(01)00395-8CrossRefGoogle Scholar
  66. Levine JS (1996) Biomass burning and global change: remote sensing, modeling and inventory development, and biomass burning in Africa, vol 1. MIT Press, LondonGoogle Scholar
  67. Li C, Hu Y, Zhang F, Chen J, Ma Z, Ye X, Yang X, Wang L, Tang X, Zhang R, Mu M, Wang G, Kan H, Wang X, Mellouki A (2017) Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. Atmos Chem Phys 17:4957–4988.  https://doi.org/10.5194/acp-17-4957-2017CrossRefGoogle Scholar
  68. Li C, Ma Z, Chen J, Wang X, Ye X, Wang L, Yang X, Kan H, Donaldson DJ, Mellouki A (2015) Evolution of biomass burning smoke particles in the dark. Atmos Environ 120:244–252.  https://doi.org/10.1016/j.atmosenv.2015.09.003CrossRefGoogle Scholar
  69. Li J, Pósfai M, Hobbs PV, Buseck PR (2003) Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. J Geophys Res Atmos 108:(D13).  https://doi.org/10.1029/2002JD002310CrossRefGoogle Scholar
  70. Li W, Shao L (2009) Transmission electron microscopy study of aerosol particles from the brown hazes in Northern China. J Geophys Res Atmos 114:(D9).  https://doi.org/10.1029/2008JD011285CrossRefGoogle Scholar
  71. Li X, Li P, Yan L, Chen J-M, Cheng T, Xu S (2011) Characterization of polycyclic aromatic hydrocarbons in fog-rain events, vol 13.  https://doi.org/10.1039/c1em10543dCrossRefGoogle Scholar
  72. Li X, Wang S, Duan L, Hao J, Li C, Chen Y, Yang L (2007) Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environ Sci Technol 41(17):6052–6058.  https://doi.org/10.1021/es0705137CrossRefPubMedGoogle Scholar
  73. Liu F, Bi X, Zhang G, Peng L, Lian X, Lu H, Fu Y, Wang X, Pa Peng, Sheng G (2017) Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. Atmos Environ 171:279–288.  https://doi.org/10.1016/j.atmosenv.2017.10.016CrossRefGoogle Scholar
  74. Liu Z, Wang Y, Gu D, Zhao C, Huey LG, Stickel R, Liao J, Shao M, Zhu T, Zeng L, Amoroso A, Costabile F, Chang C-C, Liu S-C (2012) Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation. Atmos Chem Phys 12:7737–7752.  https://doi.org/10.5194/acp-12-7737-2012CrossRefGoogle Scholar
  75. Mammarella I, Rannik Ü, Aalto P, Keronen P, Vesala T, Kulmala M (2011) Long-term aerosol particle flux observations. Part II: Particle size statistics and deposition velocities. Atmos Environ 45(23):3794–3805.  https://doi.org/10.1016/j.atmosenv.2011.04.022CrossRefGoogle Scholar
  76. Martins JA, Gonçalves FLT, Morales CA, Fisch GF, Pinheiro FGM, Leal Júnior JBV, Oliveira CJ, Silva EM, Oliveira JCP, Costa AA, Silva Dias MAF (2009) Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season. Meteorol Atmos Phys 104(1):83–93.  https://doi.org/10.1007/s00703-009-0019-6CrossRefGoogle Scholar
  77. McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34(11):2080–2091.  https://doi.org/10.1021/es9909632CrossRefGoogle Scholar
  78. Mielonen T, Aaltonen V, Lihavainen H, Hyvärinen A-P, Arola A, Komppula M, Kivi R (2013) Biomass burning aerosols observed in Northern Finland during the 2010 wildfires in Russia. Atmosphere 2013 4:17–34.  https://doi.org/10.3390/atmos4010017CrossRefGoogle Scholar
  79. Mkoma SL, Rocha GO, Domingos JSS, Santos JVS, Cardoso MP, Silva RL, Andrade JB (2014) Atmospheric particle dry deposition of major ions to the South Atlantic coastal area observed at Baía de Todos os Santos, Brazil. An Acad Bras Ciênc 86:37–55CrossRefGoogle Scholar
  80. Möller U, Schumann G (1970) Mechanisms of transport from the atmosphere to the earth’s surface. Oceans and atmospheres. J Geophys Res 75:3013–3019CrossRefGoogle Scholar
  81. Nho-Kim EY, Michou M, Peuch VH (2004) Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmos Environ 38(13):1933–1942.  https://doi.org/10.1016/j.atmosenv.2004.01.002CrossRefGoogle Scholar
  82. Nie WJ, Ding A, Xie Y, Xu Z, Mao H, Kerminen V-M, F. Zheng L, Qi X, Yang X-Q, Sun J, Herrmann E, Petäjä T, Kulmala M, Fu C (2014) Influence of biomass burning plumes on HONO chemistry in eastern China, vol 14.  https://doi.org/10.5194/acpd-14-7859-2014CrossRefGoogle Scholar
  83. Nirmalkar J, Deb MK (2016) Impact of intense field burning episode on aerosol mass loading and its possible health implications in rural area of eastern central India. Air Qual Atmos Health 9(3):241–249.  https://doi.org/10.1007/s11869-015-0330-yCrossRefGoogle Scholar
  84. Obaidullah M, Bram S, Verma VK, De Ruyck J (2013) A review on particle emissions from small scale biomass combustion, vol 2Google Scholar
  85. Pellerin G, Maro D, Damay P, Gehin E, Connan O, Laguionie P, Hébert D, Solier L, Boulaud D, Lamaud E, Charrier X (2017) Aerosol particle dry deposition velocity above natural surfaces: quantification according to the particles diameter. J Aerosol Sci 114:107–117.  https://doi.org/10.1016/j.jaerosci.2017.09.004CrossRefGoogle Scholar
  86. Phuleria HC, Fine PM, Zhu Y, Sioutas C (2005) Air quality impacts of the October 2003 Southern California wildfires. J Geophys Res Atmos 110(D7).  https://doi.org/10.1029/2004jd004626
  87. Pokhrel RP, Wagner NL, Langridge JM, Lack DA, Jayarathne T, Stone EA, Stockwell CE, Yokelson RJ, Murphy SM (2016) Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmos Chem Phys 16:9549–9561.  https://doi.org/10.5194/acp-16-9549-2016CrossRefGoogle Scholar
  88. Pryor SC, Barthelmie RJ, Spaulding AM, Larsen SE, Petroff A (2009) Size‐resolved fluxes of sub‐100‐nm particles over forests. J Geophys Res Atmos 114(D18).  https://doi.org/10.1029/2009jd012248
  89. Pryor SC, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ, Birsan F, Nemitz E, Rinne J, Kulmala M, Grönholm T, Taipale R, Vesala T (2008) A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus B: Chem Phys Meteorol 60(1):42–75.  https://doi.org/10.1111/j.1600-0889.2007.00298.xCrossRefGoogle Scholar
  90. Qiao X, Xiao W, Jaffe D, Kota SH, Ying Q, Tang Y (2015) Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China. Sci Total Environ 511:28–36.  https://doi.org/10.1016/j.scitotenv.2014.12.028CrossRefPubMedGoogle Scholar
  91. Reid JS, Eck TF, Christopher SA, Koppmann R, Dubovik O, Eleuterio DP, Holben BN, Reid EA, Zhang J (2005) A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos Chem Phys 5:827–849.  https://doi.org/10.5194/acp-5-827-2005CrossRefGoogle Scholar
  92. Rocha GO, Allen AG, Cardoso AA (2005) Influence of agricultural biomass burning on aerosol size distribution and dry deposition in Southeastern Brazil. Environ Sci Technol 39(14):5293–5301.  https://doi.org/10.1021/es048007uCrossRefPubMedGoogle Scholar
  93. Saffari A, Daher N, Samara C, Voutsa D, Kouras A, Manoli E, Karagkiozidou O, Vlachokostas C, Moussiopoulos N, Shafer MM, Schauer JJ, Sioutas C (2013) Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. Environ Sci Technol 47(23):13313–13320.  https://doi.org/10.1021/es403847hCrossRefPubMedGoogle Scholar
  94. Sapkota A, Symons JM, Kleissl J, Wang L, Parlange MB, Ondov J, Breysse PN, Diette GB, Eggleston PA, Buckley TJ (2005) Impact of the 2002 canadian forest fires on particulate matter air quality in Baltimore City. Environ Sci Technol 39(1):24–32.  https://doi.org/10.1021/es035311zCrossRefPubMedGoogle Scholar
  95. SCENIHR (2005) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission Health & Consumer Protection Directorate-General and Scientific Committee on Emerging and Newly Identified Health Risks https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf. Accessed 20 April 2018
  96. Schumann G (1975) The process of direct deposition of aerosols at the sea surface. Paper presented at the XVI general assembly of the international union of geodesy and geophysics, University of Heidelberg, August–September 1975Google Scholar
  97. Sehmel G, Sutter S (1974) Particle deposition rates on a water surface as a function of particle diameter and air velocity. J Rech Atmos 912–920Google Scholar
  98. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2(3):207–247.  https://doi.org/10.1007/bf00137988CrossRefGoogle Scholar
  99. Skoog DA, James Holler F, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Harcourt Brace & Company, PhiladelphiaGoogle Scholar
  100. Skoog DA, West DM, James Holler F, Crouch SR (2013) Fundamentals of analytical chemistry, 96th edn. Brooks/Cole, Belmont, CAGoogle Scholar
  101. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ (1967) 16(7):1785–1794.  https://doi.org/10.1016/0004-6981(82)90271-2CrossRefGoogle Scholar
  102. Souza ML (2016) Estudo da distribuição de tamanho e composição iônica de aerossóis e seus efeitos na capacidade de nuclear gotas de nuvens. Universidade Estadual Paulista, Araraquara, Doctorate degreeGoogle Scholar
  103. Souza ML, Allen AG, Cardoso AA (2017) Understanding aerosol formation mechanisms in a subtropical atmosphere impacted by biomass burning and agroindustry. Atmos Res 183:94–103.  https://doi.org/10.1016/j.atmosres.2016.08.019CrossRefGoogle Scholar
  104. Sun LY, Wang ZB, Du W, Zhang Q, Wang Q, Fu P, Pan X, Li J, Jayne J, Worsnop DR (2015) Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmos Chem Phys 15:10149–10165.  https://doi.org/10.5194/acpd-15-14549-2015CrossRefGoogle Scholar
  105. Sun Y, Jiang Q, Xu Y, Ma Y, Zhang Y, Liu X, Li W, Wang F, Li J, Wang P, Li Z (2016) Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. J Geophys Res Atmos 121(5):2508–2521.  https://doi.org/10.1002/2015JD024261CrossRefGoogle Scholar
  106. Taiwo AM, Beddows DCS, Shi Z, Harrison RM (2014) Mass and number size distributions of particulate matter components: comparison of an industrial site and an urban background site. Sci Total Environ 475:29–38.  https://doi.org/10.1016/j.scitotenv.2013.12.076CrossRefPubMedGoogle Scholar
  107. Urban RC, Alves CA, Allen AG, Cardoso AA, Campos MLAM (2016) Organic aerosols in a Brazilian agro-industrial area: speciation and impact of biomass burning. Atmos Res 169:271–279.  https://doi.org/10.1016/j.atmosres.2015.10.008CrossRefGoogle Scholar
  108. US EPA (2016) Particulate Matter (PM) Pollution. United States Environmental Protection Agency. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM. Accessed 20 April 2018
  109. US EPA (2018) Criteria Air Pollutants. United States Environmental Protection Agency. https://www.epa.gov/criteria-air-pollutants. Accessed 19 April 2018
  110. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  111. Vallero D (2014) Fundamentals of air pollution, 5th edn. Academic Press, USAGoogle Scholar
  112. Vincent JH (2007) Aerosol sampling: science, standards, instrumentation and applications. Wiley, Hoboken.  https://doi.org/10.1002/9780470060230
  113. Vu TV, Delgado-Saborit JM, Harrison RM (2015) Review: particle number size distributions from seven major sources and implications for source apportionment studies. Atmos Environ 122:114–132.  https://doi.org/10.1016/j.atmosenv.2015.09.027CrossRefGoogle Scholar
  114. Wang W, Jariyasopit N, Schrlau J, Jia Y, Tao S, Yu T-W, Dashwood RH, Zhang W, Wang X, Simonich SLM (2011) Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ Sci Technol 45(16):6887–6895.  https://doi.org/10.1021/es201443zCrossRefGoogle Scholar
  115. Wang ZB, Hu M, Yue DL, He LY, Huang XF, Yang Q, Zheng J, Zhang RY, Zhang YH (2013) New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus B: Chem Phys Meteorol 65(1):19965.  https://doi.org/10.3402/tellusb.v65i0.19965CrossRefGoogle Scholar
  116. Wasiuta V, Lafrenière MJ, Norman A-L (2015) Atmospheric deposition of sulfur and inorganic nitrogen in the Southern Canadian Rocky Mountains from seasonal snowpacks and bulk summer precipitation. J Hydrol 523:563–573.  https://doi.org/10.1016/j.jhydrol.2015.01.073CrossRefGoogle Scholar
  117. Whitby KT, Sverdrup GM (1980) California aerosols: their physical and chemical characteristics. Adv Environ Sci Technol 8:477–525Google Scholar
  118. Wieser U, Gaegauf CK (2000) Nanoparticle emissions of wood combustion processes. Paper presented at the 1st world conference and exhibition on biomass for energy and industry, Sevilla, Spain, 5–9 JuneGoogle Scholar
  119. Wu QZ, Wang ZF, Gbaguidi A, Gao C, Li LN, Wang W (2011) A numerical study of contributions to air pollution in Beijing during CAREBeijing-2006. Atmos Chem Phys 11(12):5997–6011.  https://doi.org/10.5194/acp-11-5997-2011CrossRefGoogle Scholar
  120. Wu Y, Zhang J, Liu S, Jiang Z, Huang X (2018) Aerosol concentrations and atmospheric dry deposition fluxes of nutrients over Daya Bay, South China Sea, vol 128.  https://doi.org/10.1016/j.marpolbul.2018.01.019CrossRefGoogle Scholar
  121. Yang YR, Liu XG, Qu Y, An JL, Jiang R, Zhang YH, Sun YL, Wu ZJ, Zhang F, Xu WQ, Ma QX (2015) Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China plain. Atmos Chem Phys 15:8165–8178.  https://doi.org/10.5194/acp-15-8165-2015CrossRefGoogle Scholar
  122. Yu F, Wang Q, Yan Q, Jiang N, Wei J, Wei Z, Yin S (2018) Particle size distribution, chemical composition and meteorological factor analysis: a case study during wintertime snow cover in Zhengzhou, China. Atmos Res 202:140–147.  https://doi.org/10.1016/j.atmosres.2017.11.016CrossRefGoogle Scholar
  123. Zhang J, Shao Y, Huang N (2014) Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos Chem Phys 14(17):8869–8882.  https://doi.org/10.5194/acp-14-8869-2014CrossRefGoogle Scholar
  124. Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3(6):2067–2082.  https://doi.org/10.5194/acp-3-2067-2003CrossRefGoogle Scholar
  125. Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35(3):549–560.  https://doi.org/10.1016/S1352-2310(00)00326-5CrossRefGoogle Scholar
  126. Zhu J, Xia X, Che H, Wang J, Zhang J, Duan Y (2016) Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmos Res 169:237–247.  https://doi.org/10.1016/j.atmosres.2015.10.012CrossRefGoogle Scholar
  127. Zhu L, Chen Y, Guo L, Wang F (2013) Estimate of dry deposition fluxes of nutrients over the East China Sea: the implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans. Atmos Environ 69:131–138.  https://doi.org/10.1016/j.atmosenv.2012.12.028CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maria Angélica M. Costa
    • 1
  • Henrique M. Fogarin
    • 1
  • Ana F. M. Costa
    • 2
  • Lorena O. Pires
    • 1
  • Débora D. V. Silva
    • 1
  • Michele Lima-Souza
    • 3
  • Kelly J. Dussán
    • 1
    Email author
  1. 1.Department of Biochemistry and Chemical TechnologyInstitute of Chemistry, São Paulo State University-UNESPAraraquara, São PauloBrazil
  2. 2.Department of Bioprocess and BiotechnologySchool of Pharmaceutical Sciences of São Paulo State University-UNESPAraraquara, São PauloBrazil
  3. 3.Department of Analytical ChemistryInstitute of Chemistry, São Paulo State University-UNESPAraraquara, São PauloBrazil

Personalised recommendations