Carbon Nanomaterials: Potential Risks to Human Health and the Environment

  • O. V. Sinitsyna
  • G. B. Meshkov
  • I. V. Yaminsky


Carbon nanomaterials, such as carbon nanotubes, graphene, and graphene oxide, are perspective for application in electronics, energy storage, aerospace and defense industries, biomedicine, etc. In the chapter, we briefly overview the structure, unique properties, current and future applications of carbon nanomaterials. Their effects on living systems are considered in details. We identify the potential health and environmental risks related to the release of the carbon nanoparticles to the environment. The chapter addresses the issues of bioaccumulation and biodegradation of the carbon nanomaterials.


Graphene Graphene oxide Carbon nanotubes Toxicity Biodegradation 



Carbon Nanotube


Graphene Oxide


Single-Walled Carbon Nanotube


Multi-Walled Carbon Nanotube


Transmission Electron Microscopy


Atomic Force Microscope


Reactive Oxygen Species


National Institute for Occupational Safety and Health


Centers for Disease Control and Prevention



This work was supported by the Russian Foundation for Basic Research (grant nos. 16-29-06290 ofi_m).


  1. Allen BL, Kotchey GP, Chen YN, Yanamala NVK, Klein-Seetharaman J, Kagan VE, Star A (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131(47):17194–17205PubMedCrossRefGoogle Scholar
  2. Armentano I, Dottori M, Puglia D, Kenny JM (2008) Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films. J Mater Sci Mater Med 19(6):2377–2387PubMedCrossRefGoogle Scholar
  3. Azarang M, Shuhaimi A, Yousefi R, Golsheikh AM, Sookhakian M (2014) Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram Int Part B 40(7):10217–10221CrossRefGoogle Scholar
  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907PubMedCrossRefGoogle Scholar
  5. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919CrossRefGoogle Scholar
  6. Bernard C, Nguyen T, Pelligrin B, Holbrook RD, Zhao M, Chin J (2011) Fate of graphene in polymer nanocomposite exposed to UV radiation. J Phys Conf Ser 304:012063CrossRefGoogle Scholar
  7. Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield RL (2013) Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann Occup Hyg 57(9):1148–1166Google Scholar
  8. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRefGoogle Scholar
  9. Bonaccorso F, Colombo LYG, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501PubMedCrossRefGoogle Scholar
  10. Bouillard JX, Vignes A, Rmili B, Moranviller D, Fleury D, Le Bihan O, Frejafon E, Ustache A (2010) Nanowastes: risk assessment from the end-of-life combustion of nanomaterials. In: International conference on safe production and use of nanomaterials, NANOSAFE 2010, Grenoble, France, 16–18 November 2010Google Scholar
  11. Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V (2007) An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammation mediators and frustrated phagocytosis. Carbon 45:1743–1756CrossRefGoogle Scholar
  12. Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, Vecchione L, Magrini A, Bottini M, Pietroiusti A (2013) Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 10(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  13. CDC (2013) NIOSH Publications and Products, Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers (2013–145)Google Scholar
  14. Chang Y, Yang S-T, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210PubMedCrossRefGoogle Scholar
  15. Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP, Petri-Fink A, Rothen-Rutishauser B (2014) A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci 137(1):55–64PubMedCrossRefGoogle Scholar
  16. Conroy J, Verma NK, Smith RJ, Rezvani E, Duesberg GS, Coleman JN, Volkov Y (2014) Biocompatibility of pristine graphene monolayers, nanosheets and thin films. arXiv:1406:2497
  17. Demicheva OV, Meshkov GB, Sinitsyna OV, Tomishko AG, Yaminsky IV (2008) Multiwall carbon nanotube tips for scanning probe microscopy. Nanotechnol Russia 3(11–12):704–709CrossRefGoogle Scholar
  18. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068PubMedCrossRefGoogle Scholar
  19. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRefGoogle Scholar
  20. Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11(12):5201–5207PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4(1):35–39CrossRefGoogle Scholar
  22. Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Ma JD, Klaine SJ (2010) The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29(11):2511–2518PubMedCrossRefGoogle Scholar
  23. Erickson K, Erni R, Zonghoon Lee Z, Alem N, Will Gannett A, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene. Oxide Adv Mater 22:4467–4472PubMedCrossRefGoogle Scholar
  24. Fatkhutdinova LM, Khaliullin TO, Vasil’yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, Birch ME, Yanamala N, Shvedova AA (2016) Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol Appl Pharmacol 299:125–131PubMedPubMedCentralCrossRefGoogle Scholar
  25. Feng Y, Lu K, Mao L, Guo X, Gao S, Petersen EJ (2015) Degradation of 14C-labeled few layer graphene via Fenton reaction: reaction rates, characterization of reaction products, and potential ecological effects. Water Res 84:49–57PubMedCrossRefGoogle Scholar
  26. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404PubMedCrossRefGoogle Scholar
  27. Fraser TWK, Reinardy HC, Shaw BJ, Henry TB, Handy RD (2011) Dietary toxicity of single walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108PubMedCrossRefGoogle Scholar
  28. Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619–620:328–337PubMedCrossRefGoogle Scholar
  29. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XW (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3(6):347–351PubMedCrossRefGoogle Scholar
  30. Goyal D, Zhang XJ, Rooney-Varga JN (2010) Impacts of singlewalled carbon nanotubes on microbial community structure in activated sludge. Lett Appl Microbiol 51(4):428–435PubMedCrossRefGoogle Scholar
  31. Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129CrossRefGoogle Scholar
  32. Gurunathan S, Han JW, Eppakayala V, Kim JH (2013) Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids Surf B 102:772–777CrossRefGoogle Scholar
  33. Harris PJF (1999) Carbon nanotubes and related strutures. Cambridge University PressGoogle Scholar
  34. Hashim N, Muda Z, Hussein MZ, Isa IM, Mohamed A, Kamari A, Bakar SA, Mamat M, Mohamad A (2016) A brief review on recent graphene oxide-based material nanocomposites: synthesis and applications. J Mater Environ Sci 7(9):3225–3243Google Scholar
  35. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568PubMedCrossRefGoogle Scholar
  36. Hu C, Lu T, Chen F, Zhang R (2013) A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J Chin Adv Mater Soc 1(1):21–39CrossRefGoogle Scholar
  37. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  38. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  39. Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246PubMedCrossRefGoogle Scholar
  40. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165(1):88–100PubMedCrossRefGoogle Scholar
  41. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kennedy AJ, Gunter JC, Chappell MA, Goss JD, Hull MS, Kirgan RA, Steevens JA (2009) Influence of nanotube preparation in aquatic bioassays. Environ Toxicol Chem 28(9):1930–1938PubMedCrossRefGoogle Scholar
  43. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefGoogle Scholar
  44. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033PubMedCrossRefGoogle Scholar
  45. Kotchey GP, Allen BL, Vedala H, Yanamala N, Kapralov AA, Tyurina YY, Klein-Seetharaman J, Kagan VE, Star A (2011) The enzymatic oxidation of graphene oxide. ACS Nano 5:2098–2108PubMedPubMedCentralCrossRefGoogle Scholar
  46. Koyama S, Endo M, Kim Y-A, Hayashi T, Yanagisawa T, Osaka K, Koyama H, Hania H, Kuroiwa N (2006) Role of systemic T-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice. Carbon 44:1079–1092CrossRefGoogle Scholar
  47. Koziol KK, Janas D, Brown E, Hao L (2017) Thermal properties of continuously spun carbon nanotube fibres. Physica E Low Dimens Syst Nanostruct 88:104–108CrossRefGoogle Scholar
  48. Krasnov AP, Afronicheva OV, Mit’ VA, Bazhenova VB, Volkova TV, Sinitsyna OV, Vygodskii YS, Rashkovan IA, Kazakov ME (2009) Role of nanofiller in friction of polymers based on polycaproamide: indirect effect. J Fric Wear 30(5):350–355CrossRefGoogle Scholar
  49. Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, Pichika MR, Tekade RK (2018) Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. Nanoscale 10:8911–8937PubMedCrossRefGoogle Scholar
  50. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388PubMedCrossRefGoogle Scholar
  51. Lee JS, Choi YC, Shin JH, Lee JH, Lee Y, Park SY, Baek JE, Park JD, Ahn K (2015) Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology 9(6):802–811PubMedCrossRefGoogle Scholar
  52. Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB (2007) Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett 7 (9):2650–2654PubMedCrossRefGoogle Scholar
  53. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem 102:4477–4482CrossRefGoogle Scholar
  54. Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G (2011) The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32(35):9374–9382PubMedCrossRefGoogle Scholar
  55. Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2):402–411PubMedCrossRefGoogle Scholar
  56. Liao KH, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615PubMedCrossRefGoogle Scholar
  57. Liu Z, Robinson JT, Sun XM, Dai HJ (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876e7Google Scholar
  58. Liu W-W, Chai S-P, Mohamed AR, Hashim U (2014) Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Indus Eng Chem 20:1171–1185CrossRefGoogle Scholar
  59. Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun 46:3116e8Google Scholar
  60. Luongo LA, Zhang XQ (2010) Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178(13):356–362PubMedCrossRefGoogle Scholar
  61. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814PubMedCrossRefGoogle Scholar
  62. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW (2013) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10:38PubMedPubMedCentralCrossRefGoogle Scholar
  63. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384PubMedCrossRefGoogle Scholar
  64. Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231PubMedCrossRefGoogle Scholar
  65. Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, Mather SJ, Bianco A, Prato M, MacNee W, Wallace WA, Kostarelos K, Donaldson K (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178(6):2587–2600PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220PubMedCrossRefGoogle Scholar
  67. Nanodatabase (2018) The nanodatabase.
  68. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PLR, Ahn J-H, Hong BH, Pastorin G, Özyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678PubMedCrossRefGoogle Scholar
  69. Nguyen T, Pelligrin B, Mermet L, Shapiro A, Gu X, Chin J (2009) Network aggregation of CNTs at the surface of epoxy/MWCNT composite exposed to UV radiation. Nanotechnology 2009Google Scholar
  70. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669PubMedCrossRefGoogle Scholar
  71. Parks AN, Chandler GT, Portis LM, Sullivan JC, Perron MM, Cantwell MG, Burgess RM, Ho KT, Ferguson PL (2014) Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments. Nanotoxicology 8:111–117PubMedCrossRefGoogle Scholar
  72. Parks AN, Chandler GT, Ho KT, Burgess RM, Ferguson PL (2015) Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Env Toxicol Chem 34(2):247–251CrossRefGoogle Scholar
  73. Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ Jr (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43(8):2969–2975PubMedCrossRefGoogle Scholar
  74. Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856PubMedCrossRefGoogle Scholar
  75. Pimenta MA, Jorio A, Brown SDM, Souza Filho AG, Dresselhaus G, Hafner JH, Lieber CM, Saito R, Dresselhaus MS (2001) Diameter dependence of the Raman-band in isolated single-wall carbon nanotubes. Phys Rev B 64:041401–041404CrossRefGoogle Scholar
  76. Qian W, Liu T, Wei F, Yuan H (2003) Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes. Carbon 41:1851–1854CrossRefGoogle Scholar
  77. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464PubMedCrossRefGoogle Scholar
  78. Sasidharan A, Panchakarla LS, Sadanandan AR, Ashokan A, Chandran P, Girish CM, Menon D, Nair SV, Rao CN, Koyakutty M (2012) Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8:1251–1263PubMedCrossRefGoogle Scholar
  79. Sasidharan A, Swaroop S, Koduri CK, Girish CM, Chandran P, Panchakarla L, Somasundaram VH, Gowd GS, Nair S, Koyakutty M (2015) Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study. Carbon 95:511–524CrossRefGoogle Scholar
  80. Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746PubMedCrossRefGoogle Scholar
  81. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Heal A 66:1909–1926CrossRefGoogle Scholar
  82. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708PubMedCrossRefGoogle Scholar
  83. Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261(2):121–133PubMedPubMedCentralCrossRefGoogle Scholar
  84. Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Grácio JJA, Dash D (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5(6):4987–4996PubMedCrossRefGoogle Scholar
  85. Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Grácio JJA, Dash D (2012) Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6(3):2731–2740PubMedCrossRefGoogle Scholar
  86. Sinitsyna OV, Meshkov GB, Yaminsky IV (2010) A novel tool for the local anodic oxidation of graphite. Proc Inst Mech Eng Part N: J Nanoeng Nanosyst 223:133–138Google Scholar
  87. Sinitsyna OV, Meshkov GB, Grigorieva AV, Antonov AA, Grigorieva IG, Yaminsky IV (2018) Blister formation during graphite surface oxidation by hummers’ method. Beilstein J Nanotechnol 9:407–414PubMedPubMedCentralCrossRefGoogle Scholar
  88. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82(2):94–109PubMedCrossRefGoogle Scholar
  89. Tran CL, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V, Tantra R (2008) An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres. Report on Project CB0406 (An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres)Google Scholar
  90. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  91. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vygodskii YS, Volkova TV, Zabegaeva ON, Chistyakova ZY, Shanditsev VA, Buzin MI, Zubavichus YV, Sinitsyna OV, Nikiforova GG, Krasnov AP, Garbuzova IA, Belavtseva EM (2009) Synthesis and characteristics of the composites based on poly(caproamide) and multiwalled carbon nanotubes. Polym Sci Ser C 51(1):63–73CrossRefGoogle Scholar
  93. Wang Y, Liu J, Liu L, Sun DD (2011) High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Res Lett 6(1):241PubMedPubMedCentralCrossRefGoogle Scholar
  94. Web Site of the Nobel Prize (2018)
  95. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43(14):5290–5294PubMedCrossRefGoogle Scholar
  96. Wildöer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62CrossRefGoogle Scholar
  97. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  98. Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, Omori T, Kanno J, Hirose A, Tsuda H (2014) Size-and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci 105:763–769PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z (2010a) In Vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522PubMedCrossRefGoogle Scholar
  100. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010b) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323PubMedCrossRefGoogle Scholar
  101. Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, Ma D, Ma G, Su Z (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33:4013–4021PubMedCrossRefGoogle Scholar
  102. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186PubMedCrossRefGoogle Scholar
  103. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C (2011a) Huang Q (2011a) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49:986–995CrossRefGoogle Scholar
  104. Zhang S, Yang K, Feng L, Liu Z (2011b) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49(12):4040–4049CrossRefGoogle Scholar
  105. Zhang L, Petersen EJ, Huang QG (2011c) Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids: Peat. Environ Sci Technol 45(4):1356–1362PubMedCrossRefGoogle Scholar
  106. Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730–734PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • O. V. Sinitsyna
    • 1
  • G. B. Meshkov
    • 2
  • I. V. Yaminsky
    • 1
    • 2
  1. 1.Laboratory for Physical Chemistry of PolymersA. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations