Advertisement

A Review on Ecotoxicity of Zinc Oxide Nanoparticles on Freshwater Algae

  • M. Bhuvaneshwari
  • V. Iswarya
  • N. Chandrasekaran
  • Amitava MukherjeeEmail author
Chapter

Abstract

The steady increase in use of ZnO nanoparticles (NPs) based consumer products possess high risk towards aquatic flora and fauna. Understanding the toxicity mechanism of ZnO NPs at an early stage is essential to develop a proper scientific design in innovation process to confine the exposure of nanoparticles at safer levels. Being the primary producers of aquatic food chain, various algal species were used as model organisms in several toxicological studies. This chapter summarizes the aspects that include environmental release, behaviour, dissolution, particle size, morphology, irradiation, reactive oxygen species generation, penetration/internalization of ZnO NPs on various algal species. Dissolved Zn ion toxicity was the major toxicity mechanism exhibited by ZnO NPs towards most of the algal species tested. Additionally, photocatalytic activity of ZnO NPs under UV irradiation also significantly increased the toxicity. To conclude, knowledge gaps and future research needs on the usage, discharge and its eco-toxicological effects of ZnO NPs were addressed.

Keywords

ZnO NPs Algae Toxicity Dissolution Reactive oxygen species 

Nomenclature

NPs

Nanoparticles

ZnO

Zinc Oxide

SEM

Scanning Electron Microscopy

TEM

Transmission Electron Microscopy

ROS

Reactive Oxygen Species

LDH

Lactate Dehydrogenase

SOD

Superoxide Dismutase

GSH

Reduced Glutathione

UV

Ultra Violet

EC50

Effective Concentration

References

  1. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18CrossRefGoogle Scholar
  2. Aravantinou AF, Andreou F, Manariotis ID (2017) Long-term toxicity of ZnO nanoparticles to Scenedesmus rubescens cultivated in different media. Sci Rep 7:13454CrossRefGoogle Scholar
  3. Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116CrossRefGoogle Scholar
  4. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  5. Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–644CrossRefGoogle Scholar
  6. Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P (2016) Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach. Environ Res 148:376–385CrossRefGoogle Scholar
  7. Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:647974CrossRefGoogle Scholar
  8. Behra R et al (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interf 10:20130396CrossRefGoogle Scholar
  9. Bhuvaneshwari M et al (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38CrossRefGoogle Scholar
  10. Bhuvaneshwari M, Iswarya V, Nagarajan R, Chandrasekaran N, Mukherjee A (2016) Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: relative contributions of dissolved ions and particles. Aquat Toxicol 177:494–502CrossRefGoogle Scholar
  11. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47CrossRefGoogle Scholar
  12. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595CrossRefGoogle Scholar
  13. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871CrossRefGoogle Scholar
  14. Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185CrossRefGoogle Scholar
  15. Dąbrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93:135–224CrossRefGoogle Scholar
  16. Dabrunz A et al (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS ONE 6:e20112CrossRefGoogle Scholar
  17. Deng Z, Chen M, Gu G, Wu L (2008) A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem B 112:16–22CrossRefGoogle Scholar
  18. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefGoogle Scholar
  19. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  20. Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R (2013) Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater 260:984–992CrossRefGoogle Scholar
  21. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73CrossRefGoogle Scholar
  22. Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178:115–122CrossRefGoogle Scholar
  23. Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res Int 23:2821–2830CrossRefGoogle Scholar
  24. Izu N, Shimada K, Akamatsu T, Itoh T, Shin W, Shiraishi K, Usui T (2014) Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV–vis–NIR absorption properties. Ceram Int 40:8775–8781CrossRefGoogle Scholar
  25. Jahan S, Yusoff IB, Alias YB, Bakar A (2017) Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol Rep 4:211–220CrossRefGoogle Scholar
  26. Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530CrossRefGoogle Scholar
  27. Kamat PV, Meisel D (2002) Nanoparticles in advanced oxidation processes. Curr Opin Colloid Interf Sci 7:282–287CrossRefGoogle Scholar
  28. Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chim 6:999–1007CrossRefGoogle Scholar
  29. Keller AA et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967CrossRefGoogle Scholar
  30. Khan I, Saeed K, Khan I (2017) Nanoparticles: Properties, applications and toxicities. Arab J ChemGoogle Scholar
  31. Kim SW, An YJ (2012) Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 95:243–253CrossRefGoogle Scholar
  32. Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  33. Krishnakumar T, Jayaprakash R, Pinna N, Singh V, Mehta B, Phani A (2009) Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Mater Lett 63:242–245CrossRefGoogle Scholar
  34. Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544CrossRefGoogle Scholar
  35. Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509CrossRefGoogle Scholar
  36. Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 7:3396–3403CrossRefGoogle Scholar
  37. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445–446:371–376CrossRefGoogle Scholar
  38. Merdzan V, Domingos RF, Monteiro CE, Hadioui M, Wilkinson KJ (2014) The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga. C reinhardtii Sci Total Environ 488–489:316–324CrossRefGoogle Scholar
  39. Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822CrossRefGoogle Scholar
  40. Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334CrossRefGoogle Scholar
  41. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  42. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  43. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013CrossRefGoogle Scholar
  44. Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157:1140–1151CrossRefGoogle Scholar
  45. Pathakoti K, Morrow S, Han C, Pelaez M, He X, Dionysiou DD, Hwang HM (2013) Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation. Environ Sci Technol 47:9988–9996CrossRefGoogle Scholar
  46. Peng C et al (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials (Basel) 7:21CrossRefGoogle Scholar
  47. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196CrossRefGoogle Scholar
  48. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109–1120CrossRefGoogle Scholar
  49. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci 162:87–106CrossRefGoogle Scholar
  50. Rajavel K, Gomathi R, Manian S, Rajendra Kumar RT (2014) In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30:592–601CrossRefGoogle Scholar
  51. Rsrae N (2004) Nanotechnologies: opportunities and uncertainties RS policy document 19/04’. The Royal Society and Royal Academy of Engineering, LondonGoogle Scholar
  52. Sapkal RT, Shinde SS, Waghmode TR, Govindwar SP, Rajpure KY, Bhosale CH (2012) Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films. J Photochem Photobiol B 110:15–21CrossRefGoogle Scholar
  53. Scown TM et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534CrossRefGoogle Scholar
  54. Snyder-Talkington BN, Qian Y, Castranova V, Guo NL (2012) New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. J Toxicol Environ Health B Crit Rev 15:468–492CrossRefGoogle Scholar
  55. Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397CrossRefGoogle Scholar
  56. Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30CrossRefGoogle Scholar
  57. Toensmeier PA (2004) Nanotechnology faces scrutiny over environment and toxicity. Plast Eng 60:14–14Google Scholar
  58. Tseng YH, Lin HY, Kuo CS, Li YY, Huang CP (2006) Thermostability of Nano-TiO2 and its photocatalytic activity. React Kinet Catal Lett 89:63–69CrossRefGoogle Scholar
  59. Tsukazaki A et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46CrossRefGoogle Scholar
  60. Walters CR, Pool E, Somerset V (2016) Nanotoxicology: a review. In: Toxicology—new aspects to this scientific conundrum. InTech, pp 45–63Google Scholar
  61. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177CrossRefGoogle Scholar
  62. Wang X et al (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243PubMedPubMedCentralGoogle Scholar
  63. Wong SW, Leung PT, Djurisic AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618CrossRefGoogle Scholar
  64. Wu F, Bortvedt A, Harper BJ, Crandon LE, Harper SL (2017) Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquat Toxicol 190:78–86CrossRefGoogle Scholar
  65. Xia T et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134CrossRefGoogle Scholar
  66. Zhang C, Chen X, Wang J, Tan L (2018) Toxicity of zinc oxide nanoparticles on marine microalgae possessing different shapes and surface structures. Environ Eng Ecol Sci 35–8:785–790CrossRefGoogle Scholar
  67. Zhou H, Wang X, Zhou Y, Yao H, Ahmad F (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • M. Bhuvaneshwari
    • 1
  • V. Iswarya
    • 1
  • N. Chandrasekaran
    • 1
  • Amitava Mukherjee
    • 1
    Email author
  1. 1.Centre for Nanobiotechnology, Vellore Institute of TechnologyVelloreIndia

Personalised recommendations