Advertisement

Nanomaterials: What Are They, Why They Cause Ecotoxicity, and How This Can Be Dealt With?

  • Mahendra RaiEmail author
  • Indarchand Gupta
  • Avinash P. Ingle
  • Jayanta Kumar Biswas
  • Olga V. Sinitsyna
Chapter

Abstract

Nanomaterials have been benefiting human by their wide applications in different fields. Till date, many types of natural and engineered nanomaterials have been reported. Each of them has specific characteristics, which are helpful in deciding their use for particular application. Although they are beneficial to the human beings, there is probability of their harmful effects on the ecosystem. After the desired use of the nanomaterials, they are routinely disposed of into the environment either intentionally or unintentionally. This scenario can create the harmful environment for the whole ecosystem. The ecotoxicity of nanomaterials is an imperative point to be considered for the safety of flora and fauna. Hence, with argument on their characteristics and applications, their safety for human and environment should also be considered. Therefore, the present chapter introduces the nanomaterials, encompasses the discussion on major types of nanomaterials, which are being available naturally and others that are synthesized artificially. The parameters which make nanoparticles harmful to ecosystem have also been discussed. Moreover, the special emphasis is given on how the scientific community can deal the situation to avoid the harmful effects of nanoparticles so that it can be beneficial to mankind without causing any damage to ecosystem.

Keywords

Nanoparticles Engineered nanomaterials Toxic effects Ecotoxicity 

References

  1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247CrossRefGoogle Scholar
  2. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102.  https://doi.org/10.1186/1556-276x-8-102CrossRefGoogle Scholar
  3. Alam B, Philippe A, Rosenfeldt RR, Seitz F, Dey S, Bundschuh M, Schaumann GE, Brenner SA (2016) Synthesis, characterization, and ecotoxicity of CeO2 nanoparticles with differing properties. J Nanopart Res.  https://doi.org/10.1007/s11051-016-3613-9
  4. Amirmahani N, Mahmoodi NO, Galangash MM, Ghavidast A (2017) Advances in nanomicelles for sustained drug delivery. J Ind Eng Chem 55:21–34CrossRefGoogle Scholar
  5. Autumn K (2006) How gecko toes stick. Am Sci 94:124–132CrossRefGoogle Scholar
  6. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649Google Scholar
  7. Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I (2002) Inhibition of listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68:3683–3690CrossRefGoogle Scholar
  8. Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM (2017) A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 47(9):767–810CrossRefGoogle Scholar
  9. Chattopadhyay GP (2018) Technologies in the era of singularity. Notion Press, Chennai, India, p 206Google Scholar
  10. Chrai SS, Murari R, Imran A (2001) Liposomes: a review. Bio Pharm 14(11):10–14Google Scholar
  11. Coe-Sullivan S, Steckel JS, Woo WK, Bawendi MG, Bulović V (2005) Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv Funct Mater 15(7):1117–1124CrossRefGoogle Scholar
  12. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170CrossRefGoogle Scholar
  13. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44CrossRefGoogle Scholar
  14. Cruchoa CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784CrossRefGoogle Scholar
  15. Donaldson K, Stone V (2003) Current hypotheses on the mechanism of toxicity of ultrafine particles. Ann Ist Super Sanità 39:405–410PubMedGoogle Scholar
  16. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393CrossRefGoogle Scholar
  17. Ekambaram P, Sathali AAH, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Revs Chem Commun 2(1):80–102Google Scholar
  18. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2:152–161CrossRefGoogle Scholar
  19. European Commission (2011) Nanomaterials European Commission. Last updated 18 October 2011Google Scholar
  20. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20CrossRefGoogle Scholar
  21. Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A (2007) Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci USA 104:10792–10795CrossRefGoogle Scholar
  22. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22(5):339–360CrossRefGoogle Scholar
  23. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd ed. Springer, Berlin, Germany, pp 527. ISBN: 978-3540686576Google Scholar
  24. Gokçe D, Köytepe S, Özcan I (2018) Effects of nanoparticles on Daphnia magna population dynamics. Chem Ecol 34(4):301–323CrossRefGoogle Scholar
  25. Goto H, Kikuchi R, Wang A (2016) Spider silk/polyaniline composite wire. Fibers 4(2):12.  https://doi.org/10.3390/fib4020012CrossRefGoogle Scholar
  26. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186CrossRefGoogle Scholar
  27. Gullapalli S, Wong MS (2011) Nanotechnology: a guide to nano-objects. Chem Eng Prog 107(5):28–32Google Scholar
  28. Gunsolus IL, Mousavi MPS, Hussein K, Bühlmann P, Haynes CL (2015) Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol 49:8078–8086CrossRefGoogle Scholar
  29. Hsiung BK, Deheyn DD, Shawkey MD, Blackledge TA (2015) Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity. Sci Adv 1(10):e1500709.  https://doi.org/10.1126/sciadv.1500709CrossRefGoogle Scholar
  30. Hu M, Lin D, Shang Y, Hu Y, Lu W, Huang X, Ning K, Chen Y, Wang Y (2017) CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus. Sci Rep 7:40015.  https://doi.org/10.1038/srep40015CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Poll Res 13(4):1–8CrossRefGoogle Scholar
  32. Inshakova E, Inshakov O (2017) World market for nanomaterials: structure and trends. In: MATEC web of conferences, vol 129, p 02013CrossRefGoogle Scholar
  33. Kertézs K, Zs Bálint, Vértesy Z, Márk GI, Louse V, Vigneron JP, Biró LP (2006) Photonic crystal type structures of biological origin: structural and spectral characterization. Curr Appl Phys 6:252–258CrossRefGoogle Scholar
  34. Khaledi-Nasab A, Sabaeian M, Sahrai M, Fallahi V (2014) Kerr nonlinearity due to intersubband transitions in a three-level InAs/GaAs quantum dot: the impact of a wetting layer on dispersion curves. J Optics 16(5):055004.  https://doi.org/10.1088/2040-8978/16/5/055004CrossRefGoogle Scholar
  35. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084CrossRefGoogle Scholar
  36. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554CrossRefGoogle Scholar
  37. Koch K, Dommisse A, Barthlott W (2006) Chemistry and crystal growth of plant wax tubules of lotus (Nelumbo nucifera) and nasturtium (Tropaeolum majus) leaves on technical substrates. Cryst Growth Des 6(11):2571–2578CrossRefGoogle Scholar
  38. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  39. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5):1977–1983CrossRefGoogle Scholar
  40. Lu XY, Wu DC, Li ZJ, Chen GQ (2011) Polymer nanoparticles. Prog Mol Biol Transl Sci 104:299–323CrossRefGoogle Scholar
  41. Mallakpour S, Behranvand V (2016) Polymeric nanoparticles: Recent development in synthesis and application. Express Polym Lett 10(11):895–913CrossRefGoogle Scholar
  42. Mattsson K, Aguilar R, Torstensson O, Perry D, Bernfur K, Linse S, Hansson L-A, Åkerfeldt KS, Cedervall T (2018) Disaggregation of gold nanoparticles by Daphnia magna. Nanotoxicology.  https://doi.org/10.1080/17435390.2018.1485982CrossRefGoogle Scholar
  43. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Ind J Pharm Sci 71(4):349–358CrossRefGoogle Scholar
  44. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRefGoogle Scholar
  45. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445CrossRefGoogle Scholar
  46. Petrescu DS, Blum AS (2018) Viral-based nanomaterials for plasmonic and photonic materials and devices. WIREs Nanomed Nanobiotechnol 10: e1508.  https://doi.org/10.1002/wnan.1508PubMedGoogle Scholar
  47. Ramírez HY, Flórez J, Camacho AS (2015) Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles. Phys Chem Chem Phys 17(37):23938.  https://doi.org/10.1039/C5CP03349GCrossRefPubMedGoogle Scholar
  48. Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013, Article ID 574648, 11 pp. http://dx.doi.org/10.1155/2013/574648
  49. Rao JP, Geckeler KE (2011) Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  50. Rotini A, Gallo A, Parlapiano I, Berducci MT, Boni R, Tosti E, Prato E, Maggi C, Cicero AM, Migliore L, Manfra L (2018) Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicol Environ Saf 147:852–860CrossRefGoogle Scholar
  51. Sabaeian M, Khaledi-Nasab A (2012) Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer. Appl Optics 51(18):4176–4185CrossRefGoogle Scholar
  52. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80.  https://doi.org/10.1186/1479-5876-6-80CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schiavo S, Oliviero M, Li J, Manzo S (2018) Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms. Environ Sci Poll Res Int 25(5):4871–4880CrossRefGoogle Scholar
  54. Schwerdtfeger P, Wirz LN, Avery J (2015) The topology of fullerenes. WIREs Comput Mol Sci 5:96–145CrossRefGoogle Scholar
  55. Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279.  https://doi.org/10.1016/j.ijpharm.2008.04.004CrossRefPubMedGoogle Scholar
  56. Silva LP, Rech EL (2013) Unravelling the biodiversity of nanoscale signatures of spider silk fibres. Nat Commun 4:1–9.  https://doi.org/10.1038/ncomms4014CrossRefGoogle Scholar
  57. Singh U, Dar MM, Hashmi AA (2014) Dendrimers: synthetic strategies, properties and applications. Orient J Chem 30(3):911–922CrossRefGoogle Scholar
  58. Skjolding LM, Sørensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A (2016) Aquatic ecotoxicity testing of nanoparticles—The quest to disclose nanoparticle effects. Angew Chem Int Ed 55:15224–15239CrossRefGoogle Scholar
  59. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B 66(2):274–280CrossRefGoogle Scholar
  60. Srinivasa-Gopalan S, Yarema KJ (2007) Nanotechnologies for the life sciences: dendrimers in cancer treatment and diagnosis, vol 7. Wiley, New YorkGoogle Scholar
  61. The Nanodatabase (2018). http://nanodb.dk
  62. Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A 40:2719–2728CrossRefGoogle Scholar
  63. Trinh HM, Joseph M, Cholkar K, Mitra R, Mitra AK (2017) Nanomicelles in diagnosis and drug delivery. In: Mitra A, Cholkar K, Mandal A (eds) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, Amsterdam, Netherlands, pp 45–58Google Scholar
  64. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780CrossRefGoogle Scholar
  65. Vijayakumar S, Malaikozhundan B, Shanthi S, Vaseeharan B, Thajuddin N (2017) Control of biofilm forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphnia cornuta. Microbial Pathogen 107:88–97CrossRefGoogle Scholar
  66. Wu W, Shi T, Liao G, Zuo H (2010) Research on spectral reflection characteristics of nanostructures in morpho butterfly wing scale. J Phys Conf Ser 276:012049.  https://doi.org/10.1088/1742-6596/276/1/012049CrossRefGoogle Scholar
  67. Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr (2008) Plant systems biology comes of age. Trends Plant Sci 13:165–171CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mahendra Rai
    • 1
    Email author
  • Indarchand Gupta
    • 2
  • Avinash P. Ingle
    • 3
  • Jayanta Kumar Biswas
    • 4
  • Olga V. Sinitsyna
    • 5
  1. 1.Nanobiotechnology Laboratory, Department of BiotechnologySGB Amravati UniversityAmravatiIndia
  2. 2.Department of BiotechnologyGovernment Institute of ScienceAurangabadIndia
  3. 3.Department of Biotechnology, Engineering School of LorenaUniversity of Sao PauloLorenaBrazil
  4. 4.Enviromicrobiology, Ecotoxicology and Ecotechnology Research Unit, Department of Ecological StudiesUniversity of KalyaniKalyani, NadiaIndia
  5. 5.Laboratory for Physical Chemistry of PolymersA. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia

Personalised recommendations