Advertisement

Wrinkling on Covalently Anchored Hydrogels

  • Chya-Yan Liaw
  • Jorge Pereyra
  • Murat GuvendirenEmail author
Chapter

Abstract

Covalently anchored hydrogels show spontaneous formation of surface instabilities. Although surface instabilities on polymeric and elastomeric films have been extensively studied, fewer studies focused on the formation of instability patterns in hydrogels. The current and prospective applications have led to a surge in the interest in the study of surface instabilities in hydrogels. These applications include cell culture models, adhesives and optical devices, and stimuli-responsive soft actuators. This chapter gives a detailed review on the recent progress in the formation of surface instabilities in confined hydrogels. A fundamental understanding of surface instabilities in different constructions of hydrogel films is provided. The fabrication approaches to create wrinkles on hydrogel surfaces are classified based on the types of stimuli and the hydrogel systems. Finally, several examples in which surface instabilities in hydrogels have been employed are presented.

Keywords

Hydrogels Surface instability Substrate-confined Wrinkling Creasing Folding Swelling Elastic instability 

References

  1. 1.
    A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: How the gut gets its villi. Science 342(6155), 212 (2013)CrossRefGoogle Scholar
  2. 2.
    G. Limbert, E. Kuhl, On skin microrelief and the emergence of expression micro-wrinkles. Soft Matter 14(8), 1292–1300 (2018).  https://doi.org/10.1039/C7SM01969F CrossRefGoogle Scholar
  3. 3.
    T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111(35), 12667 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Ciarletta, Buckling instability in growing tumor spheroids. Phys. Rev. Lett. 110(15), 158102 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, M. Ben Amar, Shape transition in artificial tumors: From smooth buckles to singular creases. Phys. Rev. Lett. 107(1), 018103 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015).  https://doi.org/10.1016/j.progpolymsci.2014.07.008 CrossRefGoogle Scholar
  7. 7.
    S.E. Sheppard, F.A. Elliott, The reticulation of Gelatine. J. Ind. Eng. Chem. 10(9), 727–732 (1918).  https://doi.org/10.1021/ie50105a018 CrossRefGoogle Scholar
  8. 8.
    P. Thirkell, S. Hoskins, Continuous Tone Digital Output, Using Archivally Proven Printing Methods and Materials (Institute of Physics, London, 2003), p. 24Google Scholar
  9. 9.
    T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase transition. Nature 325, 796 (1987).  https://doi.org/10.1038/325796a0 CrossRefGoogle Scholar
  10. 10.
    Q. Du, Y. Guan, X.X. Zhu, Y. Zhang, Swelling-induced surface instability patterns guided by pre-introduced structures. Soft Matter 11(10), 1937–1944 (2015).  https://doi.org/10.1039/C4SM02584A CrossRefGoogle Scholar
  11. 11.
    V. Trujillo, J. Kim, R.C. Hayward, Creasing instability of surface-attached hydrogels. Soft Matter 4(3), 564–569 (2008).  https://doi.org/10.1039/B713263H CrossRefGoogle Scholar
  12. 12.
    J. Yoon, J. Kim, R.C. Hayward, Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter 6(22), 5807–5816 (2010).  https://doi.org/10.1039/C0SM00372G CrossRefGoogle Scholar
  13. 13.
    J. Kim, Morphological analysis of crease patterns formed on surface-attached hydrogel with a gradient in thickness. J. Appl. Polym. Sci. 131(13), 40482 (2014).  https://doi.org/10.1002/app.40482 CrossRefGoogle Scholar
  14. 14.
    Y. Tokudome, H. Kuniwaki, K. Suzuki, D. Carboni, G. Poologasundarampillai, M. Takahashi, Thermoresponsive wrinkles on hydrogels for soft actuators. Adv. Mater. Interfaces 3(12), 1500802 (2016).  https://doi.org/10.1002/admi.201500802 CrossRefGoogle Scholar
  15. 15.
    Y. Li, J.J. Peterson, S.B. Jhaveri, K.R. Carter, Patterned polymer films via reactive silane infusion-induced wrinkling. Langmuir 29(14), 4632–4639 (2013).  https://doi.org/10.1021/la400155d CrossRefGoogle Scholar
  16. 16.
    M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6(9), 2044–2049 (2010).  https://doi.org/10.1039/B927374C CrossRefGoogle Scholar
  17. 17.
    M. Guvendiren, J.A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22), 5795–5801 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009).  https://doi.org/10.1002/adfm.200900622 CrossRefGoogle Scholar
  19. 19.
    K. Huraux, T. Narita, B. Bresson, C. Fretigny, F. Lequeux, Wrinkling of a nanometric glassy skin/crust induced by drying in poly(vinyl alcohol) gels. Soft Matter 8(31), 8075–8081 (2012).  https://doi.org/10.1039/C2SM25480H CrossRefGoogle Scholar
  20. 20.
    S.K. Basu, L.E. Scriven, L.F. Francis, A.V. McCormick, Mechanism of wrinkle formation in curing coatings. Prog. Org. Coat. 53(1), 1–16 (2005).  https://doi.org/10.1016/j.porgcoat.2004.08.007 CrossRefGoogle Scholar
  21. 21.
    S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20(16), 2550–2564 (2010).  https://doi.org/10.1002/adfm.201000034 CrossRefGoogle Scholar
  22. 22.
    W.R. Drummond, M.L. Knight, M.L. Brannon, N.A. Peppas, Surface instabilities during swelling of pH-sensitive hydrogels. J. Control. Release 7(2), 181–183 (1988).  https://doi.org/10.1016/0168-3659(88)90010-7 CrossRefGoogle Scholar
  23. 23.
    A. Ghatak, A.L. Das, Kink instability of a highly deformable elastic cylinder. Phys. Rev. Lett. 99(7), 076101 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Zeng, R. Li, S.G. Freire, V.M.M. Garbellotto, E.Y. Huang, A.T. Smith, C. Hu, W.R.T. Tait, Z. Bian, G. Zheng, D. Zhang, L. Sun, Moisture-responsive wrinkling surfaces with tunable dynamics. Adv. Mater. 29(24), 1700828 (2017).  https://doi.org/10.1002/adma.201700828 CrossRefGoogle Scholar
  25. 25.
    B. Xu, C. Hayward Ryan, Low-voltage switching of crease patterns on hydrogel surfaces. Adv. Mater. 25(39), 5555–5559 (2013).  https://doi.org/10.1002/adma.201300968 CrossRefGoogle Scholar
  26. 26.
    M. Kato, Y. Tsuboi, A. Kikuchi, T.-A. Asoh, Hydrogel adhesion with wrinkle formation by spatial control of polymer networks. J. Phys. Chem. B 120(22), 5042–5046 (2016).  https://doi.org/10.1021/acs.jpcb.6b01449 CrossRefGoogle Scholar
  27. 27.
    B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. J. Mech. Phys. Solids 59(4), 758–774 (2011).  https://doi.org/10.1016/j.jmps.2011.01.010 CrossRefGoogle Scholar
  28. 28.
    Y. Cao, Y. Jiang, B. Li, X. Feng, Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mech. Solida Sin. 25(5), 483–492 (2012).  https://doi.org/10.1016/S0894-9166(12)60043-3 CrossRefGoogle Scholar
  29. 29.
    E. Sultan, A. Boudaoud, The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. 75(5), 051002 (2008).  https://doi.org/10.1115/1.2936922 CrossRefGoogle Scholar
  30. 30.
    E.B. Hohlfeld, Creasing, Point-Bifurcations, and the Spontaneous Breakdown of Scale-Invariance (Harvard University, Cambridge, MA, 2008)Google Scholar
  31. 31.
    A.N. Gent, I.S. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72(2), 253–262 (1999).  https://doi.org/10.5254/1.3538798 CrossRefGoogle Scholar
  32. 32.
    M.K. Kang, R. Huang, Swell-induced surface instability of confined hydrogel layers on substrates. J. Mech. Phys. Solids 58(10), 1582–1598 (2010).  https://doi.org/10.1016/j.jmps.2010.07.008 CrossRefGoogle Scholar
  33. 33.
    Q. Han, C. Li, Y. Guan, X.X. Zhu, Y. Zhang, Swelling-induced surface instability of a hydrogen-bonded LBL film and its self-healing. Polymer 55(9), 2197–2204 (2014).  https://doi.org/10.1016/j.polymer.2014.03.015 CrossRefGoogle Scholar
  34. 34.
    Q. Wang, Zhao, X. A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5, 8887 (2015).  https://doi.org/10.1038/srep08887 https://www.nature.com/articles/srep08887#supplementary-informationCrossRefGoogle Scholar
  35. 35.
    M.A. Biot, Surface instability of rubber in compression. Appl. Sci. Res. Sect. A 12(2), 168–182 (1963).  https://doi.org/10.1007/BF03184638 CrossRefGoogle Scholar
  36. 36.
    E. Southern, A.G. Thomas, Effect of constraints on the equilibrium swelling of rubber vulcanizates. J. Polym. Sci. Part A Gen. Pap. 3(2), 641–646 (1965).  https://doi.org/10.1002/pol.1965.100030220 CrossRefGoogle Scholar
  37. 37.
    K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99(12), L94–L96 (2010).  https://doi.org/10.1016/j.bpj.2010.09.045 CrossRefGoogle Scholar
  38. 38.
    T. Mora, A. Boudaoud, Buckling of swelling gels. Eur. Phys. J. E Soft Matter 20(2), 119–124 (2006).  https://doi.org/10.1140/epje/i2005-10124-5 CrossRefGoogle Scholar
  39. 39.
    Y. Li, C. Li, Z. Hu, Pattern formation of constrained acrylamide/sodium acrylate copolymer gels in acetone/water mixture. J. Chem. Phys. 100(6), 4637–4644 (1994).  https://doi.org/10.1063/1.466296 CrossRefGoogle Scholar
  40. 40.
    A. Opdahl, H. Kim Seong, S. Koffas Telly, C. Marmo, A. Somorjai Gabor, Surface mechanical properties of pHEMA contact lenses: Viscoelastic and adhesive property changes on exposure to controlled humidity. J. Biomed. Mater. Res. A 67A(1), 350–356 (2003).  https://doi.org/10.1002/jbm.a.10054 CrossRefGoogle Scholar
  41. 41.
    G.A. Hutcheon, C. Messiou, R.M. Wyre, M.C. Davies, S. Downes, Water absorption and surface properties of novel poly(ethylmethacrylate) polymer systems for use in bone and cartilage repair. Biomaterials 22(7), 667–676 (2001).  https://doi.org/10.1016/S0142-9612(00)00229-5 CrossRefGoogle Scholar
  42. 42.
    R.W. Korsmeyer, N.A. Peppas, Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers. J. Control. Release 1(2), 89–98 (1984).  https://doi.org/10.1016/0168-3659(84)90001-4 CrossRefGoogle Scholar
  43. 43.
    L. Ferreira, M.M. Vidal, M.H. Gil, Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int. J. Pharm. 194(2), 169–180 (2000).  https://doi.org/10.1016/S0378-5173(99)00375-0 CrossRefGoogle Scholar
  44. 44.
    J.D. Andrade, Hydrogels for medical and related applications. Am. Chem. Soc. 31, 380 (1976)Google Scholar
  45. 45.
    M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010).  https://doi.org/10.1016/j.biomaterials.2010.05.037 CrossRefGoogle Scholar
  46. 46.
    Z. Zhao, J. Gu, Y. Zhao, Y. Guan, X.X. Zhu, Y. Zhang, Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15(9), 3306–3312 (2014).  https://doi.org/10.1021/bm500722g CrossRefGoogle Scholar
  47. 47.
    J. Gu, X. Li, H. Ma, Y. Guan, Y. Zhang, One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer 110, 114–123 (2017).  https://doi.org/10.1016/j.polymer.2016.12.076 CrossRefGoogle Scholar
  48. 48.
    M.M. Barsan, M. David, M. Florescu, L. Ţugulea, C.M.A. Brett, A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99, 46–52 (2014).  https://doi.org/10.1016/j.bioelechem.2014.06.004 CrossRefGoogle Scholar
  49. 49.
    M.M. de Villiers, D.P. Otto, S.J. Strydom, Y.M. Lvov, Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev. 63(9), 701–715 (2011).  https://doi.org/10.1016/j.addr.2011.05.011 CrossRefGoogle Scholar
  50. 50.
    P.T. Hammond, Building biomedical materials layer-by-layer. Mater. Today 15(5), 196–206 (2012).  https://doi.org/10.1016/S1369-7021(12)70090-1 CrossRefGoogle Scholar
  51. 51.
    S. Mehrotra, D. Lynam, R. Maloney, M. Pawelec Kendell, H. Tuszynski Mark, I. Lee, C. Chan, J. Sakamoto, Time controlled protein release from layer-by-layer assembled multilayer functionalized agarose hydrogels. Adv. Funct. Mater. 20(2), 247–258 (2009).  https://doi.org/10.1002/adfm.200901172 CrossRefGoogle Scholar
  52. 52.
    J. Borges, J.F. Mano, Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 114(18), 8883–8942 (2014).  https://doi.org/10.1021/cr400531v CrossRefGoogle Scholar
  53. 53.
    J. Hou, Q. Li, X. Han, C. Lu, Swelling/deswelling-induced reversible surface wrinkling on layer-by-layer multilayers. J. Phys. Chem. B 118(49), 14502–14509 (2014).  https://doi.org/10.1021/jp508724n CrossRefGoogle Scholar
  54. 54.
    E.P. Chan, J.M. Karp, R.S. Langer, A “Self-Pinning” adhesive based on responsive surface wrinkles. J. Polym. Sci. B Polym. Phys. 49(1), 40–44 (2011).  https://doi.org/10.1002/polb.22165 CrossRefGoogle Scholar
  55. 55.
    M.M. Feldstein, R.A. Siegel, Molecular and nanoscale factors governing pressure-sensitive adhesion strength of viscoelastic polymers. J. Polym. Sci. B Polym. Phys. 50(11), 739–772 (2012).  https://doi.org/10.1002/polb.23065 CrossRefGoogle Scholar
  56. 56.
    A. Gandhi, A. Paul, S.O. Sen, K.K. Sen, Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2), 99–107 (2015).  https://doi.org/10.1016/j.ajps.2014.08.010 CrossRefGoogle Scholar
  57. 57.
    C. Li, Z. Hu, Y. Li, Temperature and time dependencies of surface patterns in constrained ionic N-isopropylacrylamide gels. J. Chem. Phys. 100(6), 4645–4652 (1994).  https://doi.org/10.1063/1.466247 CrossRefGoogle Scholar
  58. 58.
    J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2009).  https://doi.org/10.1038/nmat2606 https://www.nature.com/articles/nmat2606#supplementary-information CrossRefGoogle Scholar
  59. 59.
    J. Yoon, P. Bian, J. Kim, J. McCarthy Thomas, C. Hayward Ryan, Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces. Angew. Chem. 124(29), 7258–7261 (2012).  https://doi.org/10.1002/ange.201202692 CrossRefGoogle Scholar
  60. 60.
    C.M. González-Henríquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer 101, 24–33 (2016).  https://doi.org/10.1016/j.polymer.2016.08.051 CrossRefGoogle Scholar
  61. 61.
    C. Robert, E. Kamal, W. Honglu, S. Wei, Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2(4), 045004 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chya-Yan Liaw
    • 1
  • Jorge Pereyra
    • 1
  • Murat Guvendiren
    • 1
    Email author
  1. 1.Otto H. York Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations