Wrinkles Obtained by Frontal Polymerization/Vitrification

  • C. M. González-Henríquez
  • M. A. Sarabia VallejosEmail author
  • Juan Rodríguez-Hernández


Frontal polymerization (FP) or vitrification consists in the generation of a reaction front, in a localized sector of the material, that travels in a particular direction. Their remarkable flexibility permits to controllably polymerize materials with different molecular weights and variable chemical nature. One of the advantages of FP is that it is possible to generate thin layers of a polymerized material over an unpolymerized composite, being suitable for creating wrinkled patterns in homogenous polymeric materials. In this chapter, the main types of frontal polymerization are described, as well as several examples and applications which take advantage of this methodology to form wrinkled patterns of variable materials.


Photofrontal polymerization Plasma-ignited frontal polymerization Wrinkled patterns 



The authors acknowledge financial support given by FONDECYT Grant No. 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program Scholarship Grant. J. Rodríguez-Hernández acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER EU). Finally, this study was funded by VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.


  1. 1.
    N.M. Chechilo, R.J. Khvilivitskii, N.S. Enikolopyan, Phenomenon of polymerization reaction spreading. Dokl. Akad. Nauk SSSR 204, 1180 (1972)Google Scholar
  2. 2.
    J.A. Pojman, Frontal Polymerization, vol 4 (Elsevier B.V, Amsterdam, 2012)Google Scholar
  3. 3.
    C. Nason, T. Roper, C. Hoyle, et al., UV-induced frontal polymerization of multifunctional (Meth)acrylates. Macromolecules 38, 5506–5512 (2005)CrossRefGoogle Scholar
  4. 4.
    S.J. Ma, S.J. Mannino, N.J. Wagner, et al., Photodirected formation and control of wrinkles on a Thiol−ene elastomer. ACS Macro Lett. 2, 474–477 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Nania, F. Foglia, O.K. Matar, et al., Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale 9, 2030–2037 (2017)CrossRefGoogle Scholar
  6. 6.
    J.A. Pojman, V.M. Ilyashenko, A.M. Khan, Free-radical frontal polymerization: Self-propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 92, 2825 (1996)CrossRefGoogle Scholar
  7. 7.
    Y.A. Chekanov, J.A. Pojman, Preparation of functionally gradient materials via frontal polymerization. J. Appl. Polym. Sci. 78, 2398–2404 (2000)CrossRefGoogle Scholar
  8. 8.
    C. Nason, J.A. Pojman, C. Hoyle, The effect of a trithiol and inorganic fillers on the photo-induced thermal frontal polymerization of a triacrylate. J. Polym. Sci. Part A Polym. Chem. 46, 8091–8096 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Nania, O.K. Matar, J.T. Cabral, Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter 11, 3067–3075 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Bomze, P. Knaack, R. Liska, Successful radical induced cationic frontal polymerization of epoxy-based monomers by C–C labile compounds. Polym. Chem. 6, 8161–8167 (2015)CrossRefGoogle Scholar
  11. 11.
    J.V. Crivello, U. Bulut, Dual photo- and thermally initiated cationic polymerization of epoxy monomers. J. Polym. Sci. Part A Polym. Chem. 44, 6750–6764 (2006)CrossRefGoogle Scholar
  12. 12.
    J.V. Crivello, B. Falk, M.R. Zonca, Photoinduced cationic ring-opening frontal polymerizations of oxetanes and oxiranes. J. Polym. Sci. Part A Polym. Chem. 42, 1630–1646 (2004)CrossRefGoogle Scholar
  13. 13.
    J.V. Crivello, Hybrid free radical/cationic frontal photopolymerizations. J. Polym. Sci. Part A Polym. Chem. 45, 4331–4340 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  15. 15.
    M. He, X. Huang, Z. Zeng, et al., Photo-triggered redox frontal polymerization: A new tool for synthesizing thermally sensitive materials. J. Polym. Sci. Part A Polym. Chem 51, 4515–4521 (2013)Google Scholar
  16. 16.
    C. Decker, The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Decker, Light-induced crosslinking polymerization. Polym. Int. 51, 1141–1150 (2002)CrossRefGoogle Scholar
  18. 18.
    J.T. Cabral, S.D. Hudson, C. Harrison, et al., Frontal photopolymerization for microfluidic applications. Langmuir 20, 10020–10029 (2004)CrossRefGoogle Scholar
  19. 19.
    Y. Ohtsuka, Y. Koike, Studies on the light-focusing plastic rod 16: Mechanism of gradient-index formation in photocopolymerization of multiple monomer systems. Appl. Opt. 23, 1774 (1984)CrossRefGoogle Scholar
  20. 20.
    Y. Koike, H. Hatanaka, Y. Ohtsuka, Studies on the light-focusing plastic rod 17: Plastic GRIN rod Lens prepared by photocopolymerization of a ternary monomer system. Appl. Opt. 23, 1779 (1984)CrossRefGoogle Scholar
  21. 21.
    G. Terrones, A.J. Pearlstein, Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations. Macromolecules 34, 3195–3204 (2001)CrossRefGoogle Scholar
  22. 22.
    Z.-F. Zhou, C. Yu, X.-Q. Wang, et al., Facile access to poly(NMA-Co-VCL) hydrogels via long range laser ignited frontal polymerization. J. Mater. Chem. A 1, 7326 (2013)CrossRefGoogle Scholar
  23. 23.
    W.Q. Tang, L.H. Mao, Z.F. Zhou, et al., Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid Polym. Sci. 292, 2529–2537 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, H. Shao, J. Tu, et al., Available plasma-ignited frontal polymerization approach toward facile fabrication of functional polymer hydrogels. Chem. Mater. 22, 5653–5659 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Yu, J. Zhou, C.F. Wang, et al., Rapid synthesis of poly(HPA-Co-VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 49, 5217–5226 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Shao, C.F. Wang, S. Chen, et al., Fast fabrication of superabsorbent polyampholytic nanocomposite hydrogels via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 52, 912–920 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Gan, J. Yin, X. Jiang, Self-wrinkling induced by the photopolymerization and self-assembly of fluorinated polymer at air/liquid interface. J. Mater. Chem. A 2, 18574–18582 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Chandra, A.J. Crosby, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23, 3441–3445 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Takeshima, W.Y. Liao, Y. Nagashima, et al., Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 48, 6378–6384 (2015)CrossRefGoogle Scholar
  30. 30.
    S.K. Park, Y.-J. Kwark, S. Nam, et al., A variation in wrinkle structures of UV-cured films with chemical structures of prepolymers. Mater. Lett. 199, 105–109 (2017)CrossRefGoogle Scholar
  31. 31.
    A. del Campo, A. Nogales, T.A. Ezquerra, et al., Modification of poly(dimethylsiloxane) as a basis for surface wrinkle formation: Chemical and mechanical characterization. Polymer (Guildf). 98, 327–335 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Qi, C. Ruck, G. Spychalski, et al., Writing wrinkles on poly(dimethylsiloxane) (PDMS) by surface oxidation with a CO2 laser engraver. ACS Appl. Mater. Interfaces 10, 4295–4304 (2018)CrossRefGoogle Scholar
  33. 33.
    J.M. Katzenstein, C.B. Kim, N.A. Prisco, et al., A photochemical approach to directing flow and stabilizing topography in polymer films. Macromolecules 47, 6804–6812 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Hou, F. Li, Z. Su, et al., Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J. Mater. Chem. C 5, 8765–8773 (2017)CrossRefGoogle Scholar
  35. 35.
    S.J. Ma, N.J. Wagner, C.J. Kloxin, Rapid and controlled photo-induced thiol–ene wrinkle formation via flowcoating. Mater. Horizons, 5:514–520 (2018)CrossRefGoogle Scholar
  36. 36.
    F.A. Bayley, J.L. Liao, P.N. Stavrinou, et al., Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-μm wrinkling. Soft Matter 10, 1155–1166 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Yang, X. Han, W. Ding, et al., Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29, 7170–7177 (2013)CrossRefGoogle Scholar
  38. 38.
    H.T. Evensen, H. Jiang, K.W. Gotrik, et al., Transformations in wrinkle patterns: Cooperation between nanoscale cross-linked surface layers and the submicrometer bulk in wafer-spun, plasma-treated polydimethylsiloxane. Nano Lett. 9, 2884–2890 (2009)CrossRefGoogle Scholar
  39. 39.
    S. Nagashima, T. Hasebe, D. Tsuya, et al., Controlled formation of wrinkled diamond-like carbon (DLC) film on grooved poly(dimethylsiloxane) substrate. Diam. Relat. Mater. 22, 48–51 (2012)CrossRefGoogle Scholar
  40. 40.
    M.-W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment. Scr. Mater. 60, 44–47 (2009)CrossRefGoogle Scholar
  41. 41.
    Q. Li, X. Han, J. Hou, et al., Patterning poly(dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. J. Phys. Chem. B 119, 13450–13461 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. M. González-Henríquez
    • 1
    • 2
  • M. A. Sarabia Vallejos
    • 3
    • 4
    Email author
  • Juan Rodríguez-Hernández
    • 5
  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Escuela de Ingeniería, Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations