Wrinkling Labyrinth Patterns on Elastomeric Janus Particles

  • Ana Catarina TrindadeEmail author
  • Pedro Patrício
  • Paulo Ivo Teixeira
  • Maria Helena Godinho


Static and dynamic periodic patterns (stripes, wrinkles, and dots) are ubiquitous in nature, ranging from small wrinkles in soft materials (such as pumpkins, melons, nuts, and dehydrated fruits or even on animal’s skin) to much larger wavelength buckles (such as in lava flows or in geological structures, as in the desert sand).

In our work, we developed a simple method to fabricate Janus particles (films, spheres, and fibers) from a single urethane/urea elastomeric material, with two different surfaces: one smooth and another wrinkled. Wrinkles were generated by selectively UV-irradiating one-half of the elastomeric particles and permanently imprinted by swelling and drying the particles in an appropriate solvent. More, the particle surface can develop diverse wrinkling wavelengths depending on the swelling conditions.

We are able to fabricate monodisperse Janus particles from a single elastomeric material with two different hemispheres: one “aged” (wrinkled) and another “young” (flat). The hierarchical tuneable surface features produced open new horizons for application of these particles as, for example, components in biosensors.


Elastomers Janus particles Janus films Janus fibers Wrinkling Polyurethane Elasticity 



This work is funded by FEDER through the COMPETE 2020 Program and National Funds through FCT – Portuguese Foundation for Science and Technology under project numbers POCI- 01-0145-FEDER-007688 (Reference UID/CTM/50025), UID/FIS/00618/2013, PTDC/FIS-NAN/0117/2014, PTDC/CTMBIO/6178/2014, and M-ERA-NET2/0007/2016 (CellColor).


  1. 1.
    H.W. Melville, Advances in colloid science. Nature 151, 5–6 (1943)CrossRefGoogle Scholar
  2. 2.
    F. Schlesener, Colloidal Particles in Critical Fluids (Cuvillier Verlag Gottinger, Gottingen, 2004)Google Scholar
  3. 3.
    R.S. Krishnan, On the depolarisation of Tyndall scattering in colloids. Proceedings of the Indian Academy of Sciences – Section A 1(10), 717–722 (1935)CrossRefGoogle Scholar
  4. 4.
    G. Schmid, Clusters and Colloids: From Theory to Applications (VCH Verlagsgesellschaft mbH, Weinheim/New York, 2008)Google Scholar
  5. 5.
    I. Cho, K.W. Lee, Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J. Appl. Polym. Sci. 30(5), 1903–1926 (1985)CrossRefGoogle Scholar
  6. 6.
    C. Casagrande, P. Fabre, E. Raphael, M. Veyssie, Janus Beads – Realization and Behavior at Water Oil Interfaces. Europhys. Lett. 9, 251–255 (1989)CrossRefGoogle Scholar
  7. 7.
    C. Casagrande, M.J. Veyssie, Beads – realization and 1st observation of interfacial properties. C. R. Acad. Sci. (Paris) 306, 1423–1425 (1988)Google Scholar
  8. 8.
    P.G. de Gennes, Soft matter. Rev. Mod. Phys. 64(3), 4 (1992)CrossRefGoogle Scholar
  9. 9.
    A. Walther, A.H.E. Muller, Janus particles. Soft Matter 4, 663–668 (2008)CrossRefGoogle Scholar
  10. 10.
    H.J. Hektor, K. Scholtmeijer, Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16(4), 434–439 (2005)CrossRefGoogle Scholar
  11. 11.
    L. Hong, S. Jiang, S. Granick, Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23), 9495–9499 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Janus particle synthesis and assembly. Adv. Mater. 22(10), 1060–1071 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Liang, B. Liu, Z. Cao, Z. Yang, Janus colloids toward interfacial engineering. Langmuir 34(14), 4123-4131 (2018)CrossRefGoogle Scholar
  14. 14.
    A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 42(8), 1097–1107 (2009)CrossRefGoogle Scholar
  16. 16.
    U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19(1), 33–60 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Zhao, M. Gao, Magnetic Janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv. Mater. 21(2), 184–187 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Li, W.-B. Zhang, I.F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S.Z.D. Cheng, Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design, “Click” synthesis, and hierarchical structure. J. Am. Chem. Soc. 133(28), 10712–10715 (2011)CrossRefGoogle Scholar
  19. 19.
    X. Feng, R. Zhang, Y. Li, Y.-l. Hong, D. Guo, K. Lang, K.-Y. Wu, M. Huang, J. Mao, C. Wesdemiotis, Y. Nishiyama, W.-B. Zhang, T. Miyoshi, T. Li, S.Z.D. Cheng, Hierarchical self-organization of ABn Dendron-like molecules into a supramolecular lattice sequence. ACS Cent. Sci. 3(8), 860–867 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Wu, Y.-Q. Zhang, M.-B. Hu, L.-J. Ren, Y. Lin, W. Wang, Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus Polyoxometalate-Silsesquioxane co-cluster. Langmuir 33(21), 5283–5290 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Ohm, N. Kapernaum, D. Nonnenmacher, F. Giesselmann, C. Serra, R. Zentel, Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J. Am. Chem. Soc. 133(14), 5305–5311 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Hessberger, L.B. Braun, F. Henrich, C. Muller, F. Giesselmann, C. Serra, R. Zentel, Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. J. Mater. Chem. C 4, 8778–8786 (2016)CrossRefGoogle Scholar
  23. 23.
    V.B. Varma, R.G. Wu, Z.P. Wang, R.V. Ramanujan, Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20), 3514–3525 (2017)CrossRefGoogle Scholar
  24. 24.
    P.-F. Jin, Y. Shao, G.-Z. Yin, S. Yang, J. He, P. Ni, W.-B. Zhang, Janus Polystyrene–Polydimethylsiloxane star polymers with a cubic core. Macromolecules 51(2), 419–427 (2018)CrossRefGoogle Scholar
  25. 25.
    F. Wurm, A.F.M. Kilbinger, Polymeric Janus particles. Angew. Chem. Int. Ed. 48(45), 8412–8421 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Lone, I.W. Cheong, Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv. 4(26), 13322–13333 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles. ACS Appl. Mater. Interfaces 5(8), 3262–3266 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Luo, L. Du, Y. Wang, Y. Lu, J. Xu, Controllable preparation of particles with microfluidics. Particuology 9(6), 545–558 (2011)CrossRefGoogle Scholar
  30. 30.
    X.-T. Sun, M. Liu, Z.-R. Xu, Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta 121, 163–177 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Nie, W. Li, M. Seo, S. Xu, E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)CrossRefGoogle Scholar
  33. 33.
    K.-H. Roh, D.C. Martin, J. Lahann, Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 4, 759–763 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Rahmani, C.H. Villa, A.F. Dishman, M.E. Grabowski, D.C. Pan, H. Durmaz, A.C. Misra, L. Colón-Meléndez, M.J. Solomon, V.R. Muzykantov, J. Lahann, Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J. Drug Target. 23(7–8), 750–758 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Cao, Q. Bian, Y. Chen, F. Liang, G. Wang, Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett. 6(10), 1124–1128 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Walther, A.H.E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113(7), 5194–5261 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S.-H. Kim, D.J. Pine, G.-R. Yi, Shaping colloids for self-assembly. Nat. Commun. 4(1688), 1–6 (2013)Google Scholar
  38. 38.
    J. Zhang, B.A. Grzybowski, S. Granick, Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Walther, M. Hoffmann, H.E. Müller Axel, Emulsion polymerization using Janus particles as stabilizers. Angew. Chem. 120(4), 723–726 (2007)CrossRefGoogle Scholar
  40. 40.
    X. Pei, Y. Tan, K. Xu, C. Liu, C. Lu, P. Wang, Pickering polymerization of styrene stabilized by starch-based nanospheres. Polym. Chem. 7(19), 3325–3333 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Tang, P.J. Quinlan, K.C. Tam, Stimuli-responsive Pickering emulsions: Recent advances and potential applications. Soft Matter 11(18), 3512–3529 (2015)CrossRefGoogle Scholar
  42. 42.
    Y. Gao, Y. Yu, How half-coated Janus particles enter cells. J. Am. Chem. Soc. 135(51), 19091–19094 (2013)CrossRefGoogle Scholar
  43. 43.
    F. Khan, M. Tanaka, Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 19, 17 (2018)CrossRefGoogle Scholar
  44. 44.
    J.A. Champion, Y.K. Katare, S. Mitragotri, Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121(1), 3–9 (2007)CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)CrossRefGoogle Scholar
  46. 46.
    H. Xie, Z.-G. She, S. Wang, G. Sharma, J.W. Smith, One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9), 4459–4463 (2012)CrossRefGoogle Scholar
  47. 47.
    S. Hwang, J. Lahann, Differentially degradable Janus particles for controlled release applications. Macromol. Rapid Commun. 33(14), 1178–1183 (2012)CrossRefGoogle Scholar
  48. 48.
    P. Johal, S. Chaudhary, Electronic paper technology. Int. J. Adv. Res. Sci. Eng. 2(9), 106-110 (2013)Google Scholar
  49. 49.
    Y. Komazakia, H. Hirama, T. Torii, Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. J. Appl. Phys. 117, 154506 (2015)CrossRefGoogle Scholar
  50. 50.
    Y. Komazaki, T. Torii, Memory effect canceling and novel driving scheme of twisting-ball display via space-charge polarization. J. Soc. Inf. Disp. 25(5), 295–301 (2017)CrossRefGoogle Scholar
  51. 51.
    X. Ma, A. Jannasch, U.-R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015)CrossRefGoogle Scholar
  52. 52.
    P.S. Schattling, M.A. Ramos-Docampo, V. Salgueiriño, B. Städler, Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11(4), 3973–3983 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Guix, S.M. Weiz, O.G. Schmidt, M. Medina-Sánchez, Self-propelled micro/nanoparticle motors. Part. Part. Syst. Charact. 35(2), 1700382 (2018)CrossRefGoogle Scholar
  54. 54.
    J. Zhang, J. Yan, S. Granick, Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55(17), 5166–5169 (2016)CrossRefGoogle Scholar
  55. 55.
    J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016)CrossRefGoogle Scholar
  56. 56.
    K.-H. Roh, M. Yoshida, J. Lahann, Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 23(10), 5683–5688 (2007)CrossRefGoogle Scholar
  57. 57.
    J. Jiang, H. Gu, H. Shao, E. Devlin, G.C. Papaefthymiou, J.Y. Ying, Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008)CrossRefGoogle Scholar
  58. 58.
    S.H. Hu, X. Gao, Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132, 7234–7237 (2010)CrossRefGoogle Scholar
  59. 59.
    L.Y. Wu, B.M. Ross, S. Hong, L.P. Lee, Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503–507 (2010)CrossRefGoogle Scholar
  60. 60.
    A. Kirillova, C. Schliebe, G. Stoychev, A. Jakob, H. Lang, A. Synytska, Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 7(38), 21218–21225 (2015)CrossRefGoogle Scholar
  61. 61.
    J. Faria, M.P. Ruiz, D.E. Resasco, Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv. Synth. Catal. 352(14–15), 2359–2364 (2010)CrossRefGoogle Scholar
  62. 62.
    L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)CrossRefGoogle Scholar
  63. 63.
    S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Steve Granick, Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010)CrossRefGoogle Scholar
  64. 64.
    J.-W. Kim, R.J. Larsen, D.A. Weitz, Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128(44), 14374–14377 (2006)CrossRefGoogle Scholar
  65. 65.
    J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)CrossRefGoogle Scholar
  66. 66.
    Y. Xuan, X. Guo, Y. Cui, Crack-free controlled wrinkling of a bilayer film with a gradient interface. Soft Matter 8(37), 9603–9609 (2012)CrossRefGoogle Scholar
  67. 67.
    T. Okayasu, H.L. Zhang, D.G. Bucknall, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRefGoogle Scholar
  68. 68.
    A.F. Miller, Materials science: Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)CrossRefGoogle Scholar
  69. 69.
    M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, A.M. Deus, P.I.C. Teixeira, Tuneable micro-and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. Eur. Phys. J. E Soft Matter 21, 319–330 (2006)CrossRefGoogle Scholar
  70. 70.
    C. Zhao, M.N. de Pinho, Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40(22), 6089–6097 (1999)CrossRefGoogle Scholar
  71. 71.
    A.C. Trindade, M.H. Godinho, J.L. Figueirinhas, Shear induced finite orientational order in urethane/urea elastomers. Polymer 45(16), 5551–5555 (2004)CrossRefGoogle Scholar
  72. 72.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  73. 73.
    A.C. Trindade, A.P.C. Almeida, J.P. Canejo, P. Patrício, P. Pieranski, M.H. Godinho, Elastomeric patterns probed by a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 657(11), 136-146 (2017)CrossRefGoogle Scholar
  74. 74.
    J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8(24), 6528–6534 (2012)CrossRefGoogle Scholar
  75. 75.
    L. Liu, M. Ren, W. Yang, Preparation of polymeric Janus particles by directional UV-directed reactions. Langmuir 25, 11048–11053 (2009)CrossRefGoogle Scholar
  76. 76.
    X. Cai, Y. Wang, X. Wang, J. Ji, J. Hong, H. Pan, J. Chen, M. Xue, Fabrication of ultrafine soft-matter arrays by selective contact thermochemical reaction. Sci. Rep. 3, 1780 (2013)CrossRefGoogle Scholar
  77. 77.
    J. Yin, Z. Cao, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl. Acad. Sci. 105(49), 19132–19135 (2008)CrossRefGoogle Scholar
  78. 78.
    M. Li, N. Hakimi, R. Perez, S. Waldman, A. Kozinski Janusz, K. Hwang Dae, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015)CrossRefGoogle Scholar
  79. 79.
    D. Terwagne, M. Brojan, M. Reis Pedro, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014)CrossRefGoogle Scholar
  80. 80.
    B. Liu, W. Wei, X. Qu, Z. Yang, Janus colloids formed by biphasic grafting at a pickering emulsion interface. Angew. Chem. 120(21), 4037–4039 (2008)CrossRefGoogle Scholar
  81. 81.
    Y. Yang, X. Han, W. Ding, S. Jiang, Y. Cao, C. Lu, Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29(23), 7170–7177 (2013)CrossRefGoogle Scholar
  82. 82.
    M. Watanabe, K. Mizukami, Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules 45(17), 7128–7134 (2012)CrossRefGoogle Scholar
  83. 83.
    J. Ji, M. Fuji, H. Watanabe, T. Shirai, Partially functionalized Janus ZnO spheres prepared by protecting mask techniques. Colloids Surf. A Physicochem. Eng. Asp. 393, 6–10 (2012)CrossRefGoogle Scholar
  84. 84.
    S.-W. Choi, I.W. Cheong, J.-H. Kim, Y. Xia, Preparation of uniform microspheres using a simple fluidic device and their crystallization into close-packed lattices. Small 5, 454–459 (2009)CrossRefGoogle Scholar
  85. 85.
    A.C. Trindade, J.P. Canejo, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Hierarchical wrinkling on elastomeric Janus spheres. J. Mater. Chem. 22, 22044 (2012)CrossRefGoogle Scholar
  86. 86.
    A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011)CrossRefGoogle Scholar
  87. 87.
    G. Cao, X. Chen, C. Li, Z. Cao, lf- assembled gular and labyrinth buckling patterns of thin films on spherical subtes. Phys. Rev. Let. 100, 036102 (2008)CrossRefGoogle Scholar
  88. 88.
    A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013)CrossRefGoogle Scholar
  89. 89.
    P. Teixeira, A.C. Trindade, M.H. Godinho, J. Azeredo, R. Oliveira, J.G. Fonseca, Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci. Polym. Ed. 17(1-2), 239-246 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Catarina Trindade
    • 1
    • 2
    Email author
  • Pedro Patrício
    • 3
    • 4
  • Paulo Ivo Teixeira
    • 3
    • 4
  • Maria Helena Godinho
    • 2
    • 5
  1. 1.Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.i3N/CENIMAT, Faculdade de Ciências e Tecnologia, FCTUniversidade NOVA de Lisboa, Campus de CaparicaCaparicaPortugal
  3. 3.ISEL – Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de LisboaLisbonPortugal
  4. 4.Centro de Física Teórica e ComputacionalFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  5. 5.Departmento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCTUniversidade NOVA de Lisboa, Campus de CaparicaCaparicaPortugal

Personalised recommendations