Advertisement

Possibilistic Information Retrieval Model Based on a Multi-terminology

  • Wiem ChebilEmail author
  • Lina F. Soualmia
  • Mohamed Nazih Omri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11323)

Abstract

We proposed in this paper a new approach for information retrieval intitled Conceptual Information Retrieval Model (CIRM). Our contribution is to exploit possibilistic networks (PN) and a multi-terminology in order to extract and disambiguate terms and then to retrieve documents. The two measures of possibility and necessity were used to select the relevant concept of an ambiguous term. Thus, the user query and unstructured documents are described throught a conceptual representation. Concepts were then filtered and ranked. Finally, a possibilistic network was exploited to match documents and queries. Two biomedical terminologies were exploited which are the MeSH thesaurus (Medical Subject Headings) and the SNOMED-CT ontology (Systematized Nomenclature of Medicine of Clinical Terms). The experimentations performed with CIRM on the OHSUMED corpus showed encouraging results: the improvement rates are +43.18% and +43.75% in terms of Main Average Precision and Normalized Discounted Cumulative Gain when compared to the baseline.

Keywords

Information retrieval Possibilistic networks Terms disambiguation Concepts Biomedical terminologies 

References

  1. 1.
    Nelson, S.J., Johnson, W.D., Humphreys, B.L.: Relationships in medical subject heading. In: Relationships in the Organization of Knowledge, pp. 171–184 (2001)Google Scholar
  2. 2.
    Chebil, W., Soualmia, L.F., Omri, M.N., Darmoni, S.J.: Indexing biomedical documents with a possibilistic network. J. Assoc. Inf. Sci. Technol. 67(4), 928–941 (2016)CrossRefGoogle Scholar
  3. 3.
    Boughanem, M., Brini, A., Dubois, D.: Possibilistic networks for information retrieval. Int. J. Approx. Reason. 50(7), 957–968 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefGoogle Scholar
  5. 5.
    Salton, G., Fox, E., Wu., H.: Extended Boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. J. Am. Soc. Inf. Sci. JASIS 27(3), 129–146(1976)CrossRefGoogle Scholar
  7. 7.
    Robertson, S., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Proceedings of the International ACM-SIGIR Conference, pp. 232–241. ACM (1994)Google Scholar
  8. 8.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR, pp. 275–281. ACM, Melbourne (1998)Google Scholar
  9. 9.
    Turtle, H., Croft, W.B.: Inference networks for document retrieval. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1–24. ACM, Brussels (1990)Google Scholar
  10. 10.
    Majdoubi, J., Tmar, M., Gargouri, F.: Using the MeSH thesaurus to index a medical article: combination of content, structure and semantics. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009. LNCS, vol. 5711, pp. 277–84. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04595-0_34CrossRefGoogle Scholar
  11. 11.
    Dinh, D., Tamine, L.: Towards a context sensitive approach to searching information based on domain specific knowledge sources. J. Web Sem. 12, 41–52 (2012)CrossRefGoogle Scholar
  12. 12.
    Prasath, R., Sarkar, S., O’Reilly, P.: Improving cross language information retrieval using corpus based query suggestion approach. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 448–457. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18117-2_33CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Choi, I., Liu, H.: Generalized ensemble model for document ranking in information retrieval. Comput. Sci. Inf. Syst. 14(1), 123–151 (2016)CrossRefGoogle Scholar
  14. 14.
    Sneiders, E.: Text retrieval by term co-occurrences in a query based vector space. In: Proceedings of COLING the 26th International Conference on Computational Linguistics, Osaka, Japan, pp. 2356–2365 (2016)Google Scholar
  15. 15.
    Ensan, F., Bagheri, E.: Document retrieval model rough semantic linking. In: Proceedings of WSDM, pp. 181–190. ACM, Cambridge (2017)Google Scholar
  16. 16.
    SNOMED-CT - SNOMED International. http://www.snomed.org/snomed-ct
  17. 17.
    Yepes, A.J., Berlanga, R.: Knowledge based word-concept model estimation and refinement for biomedical text mining. J. Biomed. Inform. 53, 300–307 (2015)CrossRefGoogle Scholar
  18. 18.
    Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proceedings of the Annual International Conference on Systems Documentation, pp. 24–26. ACM, Toronto (1986)Google Scholar
  19. 19.
    Voorhees, E.M.: Using WordNet to disambiguate word senses for text retrieval. In: ACM SIGIR Conference, pp. 171–180. ACM (1993)Google Scholar
  20. 20.
    Tulkens, S., Šuster, S., Daelemans, W.: Using distributed representations to disambiguate biomedical and clinical concepts. arXiv preprint arXiv: 1608.05605 (2016)
  21. 21.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(4), 267–270 (2004)CrossRefGoogle Scholar
  22. 22.
    Parameswarappa, S., Narayana, V.N.: Kannada word sense disambiguation using decision list. IJETTCS 2(3), 272–278 (2013)Google Scholar
  23. 23.
    Dayu, Y., Richardson, J., Doherty, R., Evans, C., Altendorf, E.: Semi-supervised Word Sense Disambiguation with Neural Models. ArXiv e-prints (2016)Google Scholar
  24. 24.
    Panchenko, A., Ruppert, E., Faralli, S.: Unsupervised does not mean uninterpretable: the case for word sense induction and disambiguation. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pp. 86–98 (2017)Google Scholar
  25. 25.
    Chebil, W., Soualmia, L.F., Darmoni, S.J.: BioDI: a new approach to improve biomedical documents indexing. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8055, pp. 78–87. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40285-2_9CrossRefGoogle Scholar
  26. 26.
    Chebil, W., Soualmia, L.F., Omri, M.N., Darmoni, S.J.: Extraction possibiliste de concepts MeSH a partir de documents biomedicaux. Revue d Intell. Artificielle 28(6), 729–752 (2014)CrossRefGoogle Scholar
  27. 27.
    Chebil, W., Soualmia, L., Omri, M.N., Darmoni, S.J.: Biomedical documents indexing with Bayesian networks and terminologies. In: 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–6. IEEE, Nanjing (2017)Google Scholar
  28. 28.
    Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: Possibilistic classifiers for numerical data. Soft Comput. 17(5), 733–751 (2013)CrossRefGoogle Scholar
  29. 29.
    De Campos, L.M., Fernandez-Luna, J.M., Huete, J.F.: The BNR model : foundations and performance of Bayesian network-based retrieval model. Int. J. Approximate Reasoning 34, 265–285 (2003)Google Scholar
  30. 30.
    Hersh, W., Buckley, C., Leone, T.J., Hickam, D.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: Croft, B.W. (ed.) SIGIR 1994, pp. 192–201. ACM/Springer, Dublin (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Wiem Chebil
    • 1
    Email author
  • Lina F. Soualmia
    • 2
  • Mohamed Nazih Omri
    • 1
  1. 1.MARS Research LaboratoryUniversity of SousseSousseTunisia
  2. 2.LITIS-TIBS EA 4108, Normandie University, Rouen UniversityRouenFrance

Personalised recommendations