Gauged Linear Sigma Models

  • Ilarion V. Melnikov
Part of the Lecture Notes in Physics book series (LNP, volume 951)


In the previous chapter we gave a number of disparate constructions of (0,2) theories. The linear sigma models that we will discuss in this final chapter provide a surprisingly unified framework for most of these. We will now define these theories and describe a number of linear sigma model successes, as well as some of the key (0,2) puzzles that still remain but are greatly informed by the linear point of view. Along the way we will present a review of some toric geometry that is essential in linear sigma model exploration.


  1. 2.
    Adams, A., Basu, A., Sethi, S.: (0,2) duality. Adv. Theor. Math. Phys. 7, 865–950 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 3.
    Adams, A., Distler, J., Ernebjerg, M.: Topological heterotic rings. Adv. Theor. Math. Phys. 10, 657–682 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 4.
    Adams, A., Dyer, E., Lee, J.: GLSMs for non-Kahler geometries. J. High Energy Phys. 1301, 044 (2013). ADSzbMATHCrossRefGoogle Scholar
  4. 5.
    Adams, A., Ernebjerg, M., Lapan, J.M.: Linear models for flux vacua.
  5. 6.
    Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev. B36, 5291–5300 (1987). Scholar
  6. 14.
    Anderson, L.B., Feng, H.: New evidence for (0,2) target space duality.
  7. 16.
    Anderson, L.B., Apruzzi, F., Gao, X., Gray, J., Lee, S.-J.: A new construction of Calabi–Yau manifolds: generalized CICYs. Nucl. Phys. B906, 441–496 (2016).; ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 22.
    Apruzzi, F., Hassler, F., Heckman, J.J., Melnikov, I.V.: UV completions for non-critical strings. J. High Energy Phys. 07, 045 (2016).; Scholar
  9. 23.
    Apruzzi, F., Hassler, F., Heckman, J.J., Melnikov, I.V.: From 6D SCFTs to dynamic GLSMs. Phys. Rev. D96(6), 066015 (2017).;
  10. 24.
    Argyres, P.C.: An introduction to global supersymmetry. DIY (2000)Google Scholar
  11. 28.
    Ashmore, A., De La Ossa, X., Minasian, R., Strickland-Constable, C., Svanes, E.E.: Finite deformations from a heterotic superpotential: holomorphic Chern–Simons and an L algebra. Scholar
  12. 29.
    Aspinwall, P.S.: A McKay-like correspondence for (0,2)-deformations.
  13. 33.
    Aspinwall, P.S., Gaines, B.: Rational curves and (0,2)-deformations. J. Geom. Phys. 88, 1–15 (2014).; ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 35.
    Aspinwall, P.S., Plesser, M.R.: General mirror pairs for gauged linear sigma models. J. High Energy Phys. 11, 029 (2015).; Scholar
  15. 36.
    Aspinwall, P.S., Plesser, M.R.: Decompactifications and massless D-branes in hybrid models.
  16. 37.
    Aspinwall, P.S., Plesser, M.R.: Elusive worldsheet instantons in heterotic string compactifications.
  17. 38.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: The monomial divisor mirror map. Int. Math. Res. Not. 1993(12), 319–337 (1993). MathSciNetzbMATHCrossRefGoogle Scholar
  18. 39.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory. Nucl. Phys. B416, 414–480 (1994). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 40.
    Aspinwall, P.S., Bridgeland, T., Craw, A., Douglas, M.R., Kapustin, A., Moore, G.W., Gross, M., Segal, G., Szendroi, B., Wilson, P.M.H.: Dirichlet Branes and Mirror Symmetry. Clay Mathematics Monographs, vol. 4. AMS, Providence (2009).
  20. 41.
    Aspinwall, P.S., Melnikov, I.V., Plesser, M.R.: (0,2) elephants. J. High Energy Phys. 1201, 060 (2012).
  21. 42.
    Aspinwall, P.S., Plesser, M.R., Wang, K.: Mirror symmetry and discriminants.
  22. 51.
    Batyrev, V.V.: Quantum cohomology rings of toric manifolds. Astérisque 218, 9–34 (1993). MathSciNetzbMATHGoogle Scholar
  23. 52.
    Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3, 493–545 (1994). MathSciNetzbMATHGoogle Scholar
  24. 53.
    Batyrev, V.: The stringy Euler number of Calabi-Yau hypersurfaces in toric varieties and the Mavlyutov duality.
  25. 54.
    Batyrev, V.V., Materov, E.N.: Toric residues and mirror symmetry. Mosc. Math. J. 2(3), 435–475 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 55.
    Batyrev, V., Nill, B.: Combinatorial aspects of mirror symmetry.
  27. 57.
    Beasley, C., Witten, E.: Residues and world-sheet instantons. J. High Energy Phys. 10, 065 (2003). ADSMathSciNetCrossRefGoogle Scholar
  28. 67.
    Benini, F., Bobev, N.: Two-dimensional SCFTs from wrapped branes and c-extremization. J. High Energy Phys. 06, 005 (2013).; Scholar
  29. 68.
    Benini, F., Cremonesi, S.: Partition functions of N=(2,2) gauge theories on S2 and vortices.
  30. 69.
    Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of 2d N=2 gauge theories.
  31. 70.
    Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups.
  32. 71.
    Berglund, P., Hubsch, T.: A generalized construction of mirror manifolds. Nucl. Phys. B393, 377–391 (1993). [AMS/IP Stud. Adv. Math.9,327(1998)].;
  33. 72.
    Berglund, P., Hubsch, T.: A generalized construction of Calabi-Yau models and mirror symmetry. SciPost Phys. 4, 009 (2018).; Scholar
  34. 73.
    Berglund, P., Candelas, P., de la Ossa, X., Derrick, E., Distler, J., et al.: On the instanton contributions to the masses and couplings of E(6) singlets. Nucl. Phys. B454, 127–163 (1995). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 74.
    Berglund, P., Johnson, C.V., Kachru, S., Zaugg, P.: Heterotic coset models and (0,2) string vacua. Nucl. Phys. B460, 252–298 (1996).; ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 77.
    Bershadsky, M., Cecotti, S., Ooguri. H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 79.
    Bertolini, M.: Testing the (0,2) mirror map. Scholar
  38. 80.
    Bertolini, M., Plesser, M.R.: Worldsheet instantons and (0,2) linear models. J. High Energy Phys. 8, 081 (2015) .; Scholar
  39. 81.
    Bertolini, M., Plesser, M.R.: (0,2) hybrid models. Scholar
  40. 82.
    Bertolini, M., Romo, M.: Aspects of (2,2) and (0,2) hybrid models. Scholar
  41. 84.
    Bertolini, M., Melnikov, I.V., Plesser, M.R.: Hybrid conformal field theories.
  42. 85.
    Billera, L.J., Filliman, P., Sturmfels, B.: Constructions and complexity of secondary polytopes. Adv. Math. 83(2), 155–179 (1990). MathSciNetzbMATHCrossRefGoogle Scholar
  43. 86.
    Blumenhagen, R., Rahn, T.: Landscape study of target space duality of (0,2) heterotic string models. J. High Energy Phys. 1109, 098 (2011). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 87.
    Blumenhagen, R., Schimmrigk, R., Wisskirchen, A. The (0,2) exactly solvable structure of chiral rings, landau-ginzburg theories, and Calabi-Yau manifolds. Nucl. Phys. B461, 460–492 (1996). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 88.
    Blumenhagen, R., Schimmrigk, R., Wisskirchen, A.: (0,2) mirror symmetry. Nucl. Phys. B486, 598–628 (1997) . ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 89.
    Blumenhagen, R., Jurke, B., Rahn, T.: Computational tools for cohomology of toric varieties. Adv. High Energy Phys. 2011, 152749 (2011).;
  47. 94.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)zbMATHCrossRefGoogle Scholar
  48. 97.
    Bradlow, S.B., Daskalopoulos, G.D.: Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Int. J. Math. 2(5), 477–513 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 98.
    Braun, V., Kreuzer, M., Ovrut, B.A., Scheidegger, E.: Worldsheet instantons and torsion curves. Part A: direct computation. J. High Energy Phys. 10, 022 (2007). ADSzbMATHCrossRefGoogle Scholar
  50. 99.
    Braun, A.P., Knapp, J., Scheidegger, E., Skarke, H., Walliser, N.-O.: PALP - a user manual. In: Rebhan, A., Katzarkov, L., Knapp, J., Rashkov, R., Scheidegger, E. (eds.) Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer. World Scientific, Singapore (2012). Google Scholar
  51. 100.
    Braun, V., Kreuzer, M., Ovrut, B.A., Scheidegger, E.: Worldsheet instantons and torsion curves.
  52. 102.
    Bryant, R.L.: An introduction to Lie groups and symplectic geometry. In: Geometry and Quantum Field Theory. Proceedings, Graduate Summer School on the Geometry and Topology of Manifolds and Quantum Field Theory, Park City, 22 June–20 July 1991, pp. 7–181. American Mathematical Society, Providence (1991)Google Scholar
  53. 104.
    Buchbinder, E.I., Lin, L., Ovrut, B.A.: Non-vanishing heterotic superpotentials on elliptic fibrations.
  54. 111.
    Candelas, P., De La Ossa, X., Font, A., Katz, S.H., Morrison, D.R.: Mirror symmetry for two parameter models. I. Nucl. Phys. B416, 481–538 (1994). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 112.
    Candelas, P., Constantin, A., Mishra, C.: Calabi-Yau threefolds with small hodge numbers. Fortschr. Phys. 66, 1800029 (2018).; Scholar
  56. 113.
    Cecotti, S., Vafa, C.: Topological antitopological fusion. Nucl. Phys. B367, 359–461 (1991). ADSzbMATHCrossRefGoogle Scholar
  57. 114.
    Chen, Y.-H., Wilczek, F., Witten, E., Halperin, B.I.: On anyon superconductivity. Int. J. Mod. Phys. B3, 1001 (1989). ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Beasley, C., Witten, E.: New instanton effects in supersymmetric QCD. J. High Energy Phys. 0501, 056 (2005).; ADSMathSciNetCrossRefGoogle Scholar
  59. 116.
    Closset, C., Gu, W., Jia, B., Sharpe, E.: Localization of twisted \( \mathcal {N}=\left (0,\;2\right ) \) gauged linear sigma models in two dimensions. J. High Energy Phys. 03, 070 (2016).; Scholar
  60. 118.
    Coleman, S.: Aspects of Symmetry. Cambridge University Press, Cambridge (1985). Scholar
  61. 120.
    Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, 469pp. AMS, Providence (2000)Google Scholar
  62. 121.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  63. 122.
    Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. AMS, Providence (2011)Google Scholar
  64. 134.
    Dijkgraaf, R., Verlinde, H.L., Verlinde, E.P.: Notes on topological string theory and 2-D quantum gravity. Based on lectures given at Spring School on Strings and Quantum Gravity, Trieste, 24 Apr–2 May 1990 and at Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, 28 May–1 Jun 1990Google Scholar
  65. 139.
    Dine, M., Seiberg, N., Wen, X.G., Witten, E.: Nonperturbative effects on the string world sheet. Nucl. Phys. B278, 769 (1986)ADSMathSciNetCrossRefGoogle Scholar
  66. 140.
    Dine, M., Seiberg, N., Wen, X.G., Witten, E.: Nonperturbative effects on the string world sheet. 2. Nucl. Phys. B289, 319 (1987)Google Scholar
  67. 142.
    Distler, J.: Resurrecting (2,0) compactifications. Phys. Lett. B188, 431–436 (1987)ADSMathSciNetCrossRefGoogle Scholar
  68. 143.
    Distler, J.: Notes on (0,2) superconformal field theories.
  69. 144.
    Distler, J., Greene, B.R.: Aspects of (2,0) string compactifications. Nucl. Phys. B304, 1 (1988)ADSMathSciNetCrossRefGoogle Scholar
  70. 145.
    Distler, J., Kachru, S.: (0,2) Landau-Ginzburg theory. Nucl. Phys. B413, 213–243 (1994). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 146.
    Distler, J., Kachru, S.: Duality of (0,2) string vacua. Nucl. Phys. B442, 64–74 (1995). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 152.
    Donagi, R., Lu, Z., Melnikov, I.V.: Global aspects of (0,2) moduli space: toric varieties and tangent bundles.
  73. 153.
    Donagi, R., Guffin, J., Katz, S., Sharpe, E.: Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties.
  74. 154.
    Donagi, R., Guffin, J., Katz, S., Sharpe, E.: A mathematical theory of quantum sheaf cohomology.
  75. 156.
    Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D=2 supersymmetric gauge theories.
  76. 157.
    Dryden, J.: Fables Ancient and Modern. HardPress Publishing, Los Angeles (2012)Google Scholar
  77. 162.
    Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)CrossRefGoogle Scholar
  78. 178.
    Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  79. 180.
    Gadde, A., Gukov, S.: 2d index and surface operators.
  80. 181.
    Gadde, A., Putrov, P.: Exact solutions of (0,2) Landau-Ginzburg models.
  81. 182.
    Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds.
  82. 183.
    Gadde, A., Gukov, S., Putrov, P.: Exact solutions of 2d supersymmetric gauge theories.
  83. 184.
    Gadde, A., Gukov, S., Putrov, P.: (0,2) trialities.
  84. 185.
    Gaiotto, D., Moore, G.W., Witten, E.: Algebra of the infrared: string field theoretic structures in massive \(\mathcal {N}=(2,2)\) field theory in two dimensions.
  85. 186.
    Garavuso, R.S., Sharpe, E.: Analogues of Mathai–Quillen forms in sheaf cohomology and applications to topological field theory. J. Geom. Phys. 92, 1–29 (2015). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. 187.
    Garcia-Etxebarria, I., Hayashi, H., Ohmori, K., Tachikawa, Y., Yonekura, K.: 8d gauge anomalies and the topological Green-Schwarz mechanism. J. High Energy Phys. 11, 177 (2017).;
  87. 189.
    Gates, S.J., Hull, C., Rocek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B248, 157 (1984). Scholar
  88. 191.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhauser, Boston (1994). zbMATHCrossRefGoogle Scholar
  89. 196.
    Gerhardus, A., Jockers, H., Ninad, U.: The geometry of gauged linear sigma model correlation functions. Scholar
  90. 200.
    Gomis, J., Lee, S.: Exact kahler potential from gauge theory and mirror symmetry. J. High Energy Phys. 1304, 019 (2013).; Scholar
  91. 210.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  92. 214.
    Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York (2003). Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. Scholar
  93. 215.
    Gu, W., Sharpe, E.: A proposal for nonabelian mirrors.
  94. 216.
    Guffin, J., Katz, S.: Deformed quantum cohomology and (0,2) mirror symmetry.
  95. 218.
    Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian T n-Spaces. Progress in Mathematics, vol. 122. Birkhäuser, Boston (1994).
  96. 219.
    Haase, C., Melnikov, I.V.: The reflexive dimension of a lattice polytope. Ann. Comb. 10(2), 211–217 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 221.
    Harris, J.: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)zbMATHCrossRefGoogle Scholar
  98. 222.
    Hartshorne, R.: Algebraic Geometry, 8th edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  99. 225.
    Herbst, M., Hori, K., Page, D.: Phases of N=2 theories in 1+1 dimensions with boundary.
  100. 226.
    Hirzebruch, F.: Ueber eine Klasse von einfach-zusammenhaengenden komplexen Mannigfaltigkeiten. Math. Ann. 124, 77–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 227.
    Hirzebruch, F., Höfer, T.: On the Euler number of an orbifold. Math. Ann. 286(1–3), 255–260 (1990). MathSciNetzbMATHCrossRefGoogle Scholar
  102. 232.
    Hori, K.: Duality in two-dimensional (2,2) supersymmetric non-abelian gauge theories. J. High Energy Phys. 10, 121 (2013).; Scholar
  103. 233.
    Hori, K., Kapustin, A.: Duality of the fermionic 2-D black hole and N=2 liouville theory as mirror symmetry. J. High Energy Phys. 0108, 045 (2001). Scholar
  104. 234.
    Hori, K., Knapp, J.: Linear sigma models with strongly coupled phases - one parameter models. J. High Energy Phys. 11, 070 (2013).; Scholar
  105. 235.
    Hori, K., Tong, D.: Aspects of non-abelian gauge dynamics in two-dimensional N=(2,2) theories. J. High Energy Phys. 05, 079 (2007).; ADSCrossRefGoogle Scholar
  106. 236.
    Hori, K., Vafa, C.: Mirror symmetry.
  107. 237.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003). With a preface by VafaGoogle Scholar
  108. 238.
    Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces. Commun. Math. Phys. 167, 301–350 (1995). Scholar
  109. 241.
    Hubsch, T.: Calabi-Yau Manifolds: A Bestiary for Physicists. World Scientific, Singapore (1992)zbMATHCrossRefGoogle Scholar
  110. 248.
    Intriligator, K.A., Seiberg, N.: Lectures on supersymmetric gauge theories and electric-magnetic duality. Nucl. Phys. Proc. Suppl. 45BC, 1–28 (1996). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. 253.
    Jia, B., Sharpe, E., Wu, R.: Notes on nonabelian (0,2) theories and dualities.
  112. 254.
    Jockers, H., Kumar, V., Lapan, J.M., Morrison, D.R., Romo, M.: Two-sphere partition functions and Gromov-Witten invariants.
  113. 257.
    Jow, S.-Y.: Cohomology of toric line bundles via simplicial Alexander duality. J. Math. Phys. 52, 033506 (2011). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. 259.
    Kachru, S., Witten, E.: Computing the complete massless spectrum of a Landau- Ginzburg orbifold. Nucl. Phys. B407, 637–666 (1993). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 260.
    Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290(2), 277–285 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 262.
    Karu, K.: Toric residue mirror conjecture for Calabi-Yau complete intersections. J. Algebraic Geom. 14(4), 741–760 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 264.
    Katz, S.H., Sharpe, E.: Notes on certain (0,2) correlation functions. Commun. Math. Phys. 262, 611–644 (2006). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 265.
    Katzarkov, L., Kontsevich, M., Pantev, T.: Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models. J. Differ. Geom. 105(1), 55–117 (2017). MathSciNetzbMATHCrossRefGoogle Scholar
  119. 266.
    Kawai, T., Mohri, K.: Geometry of (0,2) Landau-Ginzburg orbifolds. Nucl. Phys. B425, 191–216 (1994). ADSMathSciNetzbMATHGoogle Scholar
  120. 268.
    Klyachko, A.A.: Equivariant bundles over toric varieties. Izv. Akad. Nauk SSSR Ser. Mat. 53(5), 1001–1039, 1135 (1989)Google Scholar
  121. 270.
    Knutson, A., Sharpe, E.R.: Sheaves on toric varieties for physics. Adv. Theor. Math. Phys. 2, 865–948 (1998). MathSciNetzbMATHCrossRefGoogle Scholar
  122. 272.
    Krawitz, M., Priddis, N., Acosta, P., Bergin, N., Rathnakumara, H.: FJRW-rings and mirror symmetry. Commun. Math. Phys. 296(1), 145–174 (2010). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  123. 273.
    Kreuzer, M., Nill, B.: Classification of toric Fano 5-folds. Adv. Geom. 9(1), 85–97 (2009). MathSciNetzbMATHCrossRefGoogle Scholar
  124. 275.
    Kreuzer, M., Skarke, H.: PALP: a package for analyzing lattice polytopes with applications to toric geometry. Comput. Phys. Commun. 157, 87–106 (2004). ADSzbMATHCrossRefGoogle Scholar
  125. 276.
    Kreuzer, M., McOrist, J., Melnikov, I.V., Plesser, M.: (0,2) deformations of linear sigma models. J. High Energy Phys. 1107, 044 (2011).; Scholar
  126. 277.
    Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 280.
    Kutasov, D., Lin, J.: (0,2) dynamics from four dimensions. Phys. Rev. D89(8), 085025 (2014).; Scholar
  128. 282.
    Lazarsfeld, R.: Positivity in Algebraic Geometry. I. A Series of Modern Surveys in Mathematics, vol. 48. Springer, Berlin (2004)Google Scholar
  129. 283.
    Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B324, 427 (1989)ADSMathSciNetGoogle Scholar
  130. 286.
    Lindstrom, U., Rocek, M., von Unge, R., Zabzine, M.: Generalized Kahler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269, 833–849 (2007).; ADSzbMATHCrossRefGoogle Scholar
  131. 287.
    Losev, A., Nekrasov, N., Shatashvili, S.L.: The Freckled instantons. Scholar
  132. 290.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, 3rd edn. Oxford University Press, Oxford (2017). zbMATHCrossRefGoogle Scholar
  133. 291.
    McOrist, J.: On the effective field theory of heterotic vacua. Lett. Math. Phys. 108(4), 1031–1081 (2018).;
  134. 292.
    McOrist, J., Melnikov, I.V.: Summing the instantons in half-twisted linear sigma models. J. High Energy Phys. 02, 026 (2009). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  135. 293.
    McOrist, J., Melnikov, I.V.: Old issues and linear sigma models. Adv. Theor. Math. Phys. 16, 251–288 (2012). MathSciNetzbMATHCrossRefGoogle Scholar
  136. 296.
    Melnikov, I.V., Plesser, M.R.: The Coulomb branch in gauged linear sigma models. J. High Energy Phys. 0506, 013 (2005).; MathSciNetCrossRefGoogle Scholar
  137. 297.
    Melnikov, I.V., Plesser, M.R.: A-model correlators from the Coulomb branch. J. High Energy Phys. 02, 044 (2006). ADSMathSciNetCrossRefGoogle Scholar
  138. 298.
    Melnikov, I.V., Plesser, M.R.: A (0,2) mirror map. J. High Energy Phys. 1102, 001 (2011).; Scholar
  139. 300.
    Melnikov, I.V., Quigley, C., Sethi, S., Stern, M.: Target spaces from chiral gauge theories. J. High Energy Phys. 1302, 111 (2013).; Scholar
  140. 306.
    Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Different Faces of Geometry. International Mathematical Series (New York), vol. 3. Kluwer/Plenum, New York (2004).; Scholar
  141. 311.
    Morrison, D.R., Plesser, M.R.: Summing the instantons: quantum cohomology and mirror symmetry in toric varieties. Nucl. Phys. B440, 279–354 (1995). Scholar
  142. 312.
    Morrison, D.R., Plesser, M.R.: Towards mirror symmetry as duality for two dimensional abelian gauge theories. Nucl. Phys. Proc. Suppl. 46, 177–186 (1996). Scholar
  143. 319.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Trudy Steklov Mat. Inst. 246, 240–262 (2004). MathSciNetzbMATHGoogle Scholar
  144. 323.
    Payne, S.: Moduli of toric vector bundles. Compos. Math. 144(5), 1199–1213 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 324.
    Pestun, V., et al.: Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017).; MathSciNetzbMATHCrossRefGoogle Scholar
  146. 329.
    Quigley, C., Sethi, S.: Linear sigma models with torsion. J. High Energy Phys. 1111, 034 (2011). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 330.
    Quigley, C., Sethi, S., Stern, M.: Novel branches of (0,2) theories. J. High Energy Phys. 1209, 064 (2012). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. 332.
    Reid, M.: Young person’s guide to canonical singularities. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). Proceedings of Symposia in Pure Mathematics, vol. 46, pp. 345–414. American Mathematical Society, Providence (1987)Google Scholar
  149. 333.
    Rocek, M., Verlinde, E.P.: Duality, quotients, and currents. Nucl. Phys. B373, 630–646 (1992).; ADSMathSciNetCrossRefGoogle Scholar
  150. 338.
    Schafer-Nameki, S., Weigand, T.: F-theory and 2d (0, 2) theories. J. High Energy Phys. 05, 059 (2016).; Scholar
  151. 347.
    Sharpe, E.: Notes on certain other (0,2) correlation functions. Scholar
  152. 350.
    Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B444, 161–190 (1995). Scholar
  153. 355.
    Szenes, A., Vergne, M.: Toric reduction and a conjecture of Batyrev and Materov. Invent. Math. 158(3), 453–495 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. 362.
    The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.2) (2018). http://www.sagemath.orgGoogle Scholar
  155. 366.
    Tong, D.: Quantum vortex strings: a review. Ann. Phys. 324, 30–52 (2009).; ADSMathSciNetzbMATHCrossRefGoogle Scholar
  156. 378.
    Witten, E.: θ vacua in two-dimensional quantum chromodynamics. Nuovo Cim. A51, 325 (1979).
  157. 380.
    Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 385.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  159. 386.
    Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  160. 387.
    Witten, E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A6, 2775–2792 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. 388.
    Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B403, 159–222 (1993). ADSMathSciNetzbMATHCrossRefGoogle Scholar
  162. 390.
    Witten, E.: Mirror manifolds and topological field theory.
  163. 392.
    Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian.
  164. 396.
    Yau, S.-T.: A survey of Calabi-Yau manifolds. In: Surveys in Differential Geometry. Vol. XIII. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surveys in Differential Geometry, vol. 13, pp. 277–318. Internatinal Press, Somerville (2009). MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ilarion V. Melnikov
    • 1
  1. 1.Department of Physics and AstronomyJames Madison UniversityHarrisonburgUSA

Personalised recommendations