Advertisement

Gauged Linear Sigma Models

  • Ilarion V. Melnikov
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 951)

Abstract

In the previous chapter we gave a number of disparate constructions of (0,2) theories. The linear sigma models that we will discuss in this final chapter provide a surprisingly unified framework for most of these. We will now define these theories and describe a number of linear sigma model successes, as well as some of the key (0,2) puzzles that still remain but are greatly informed by the linear point of view. Along the way we will present a review of some toric geometry that is essential in linear sigma model exploration.

References

  1. 2.
    Adams, A., Basu, A., Sethi, S.: (0,2) duality. Adv. Theor. Math. Phys. 7, 865–950 (2004). http://arxiv.org/abs/hep-th/0309226 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 3.
    Adams, A., Distler, J., Ernebjerg, M.: Topological heterotic rings. Adv. Theor. Math. Phys. 10, 657–682 (2006). http://arxiv.org/abs/hep-th/0506263 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 4.
    Adams, A., Dyer, E., Lee, J.: GLSMs for non-Kahler geometries. J. High Energy Phys. 1301, 044 (2013). http://arxiv.org/abs/1206.5815 ADSzbMATHCrossRefGoogle Scholar
  4. 5.
    Adams, A., Ernebjerg, M., Lapan, J.M.: Linear models for flux vacua. http://arxiv.org/abs/hep-th/0611084
  5. 6.
    Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev. B36, 5291–5300 (1987). http://dx.doi.org/10.1103/PhysRevB.36.5291ADSMathSciNetCrossRefGoogle Scholar
  6. 14.
    Anderson, L.B., Feng, H.: New evidence for (0,2) target space duality. http://arxiv.org/abs/1607.04628
  7. 16.
    Anderson, L.B., Apruzzi, F., Gao, X., Gray, J., Lee, S.-J.: A new construction of Calabi–Yau manifolds: generalized CICYs. Nucl. Phys. B906, 441–496 (2016). http://dx.doi.org/10.1016/j.nuclphysb.2016.03.016; http://arxiv.org/abs/1507.03235 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 22.
    Apruzzi, F., Hassler, F., Heckman, J.J., Melnikov, I.V.: UV completions for non-critical strings. J. High Energy Phys. 07, 045 (2016). http://dx.doi.org/10.1007/JHEP07(2016)045; http://arxiv.org/abs/1602.04221Google Scholar
  9. 23.
    Apruzzi, F., Hassler, F., Heckman, J.J., Melnikov, I.V.: From 6D SCFTs to dynamic GLSMs. Phys. Rev. D96(6), 066015 (2017). http://dx.doi.org/10.1103/PhysRevD.96.066015; http://arxiv.org/abs/1610.00718
  10. 24.
    Argyres, P.C.: An introduction to global supersymmetry. DIY (2000)Google Scholar
  11. 28.
    Ashmore, A., De La Ossa, X., Minasian, R., Strickland-Constable, C., Svanes, E.E.: Finite deformations from a heterotic superpotential: holomorphic Chern–Simons and an L algebra. http://arxiv.org/abs/1806.08367Google Scholar
  12. 29.
    Aspinwall, P.S.: A McKay-like correspondence for (0,2)-deformations. http://arxiv.org/abs/1110.2524
  13. 33.
    Aspinwall, P.S., Gaines, B.: Rational curves and (0,2)-deformations. J. Geom. Phys. 88, 1–15 (2014). http://dx.doi.org/10.1016/j.geomphys.2014.09.012; http://arxiv.org/abs/1404.7802 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 35.
    Aspinwall, P.S., Plesser, M.R.: General mirror pairs for gauged linear sigma models. J. High Energy Phys. 11, 029 (2015). http://dx.doi.org/10.1007/JHEP11(2015)029; http://arxiv.org/abs/1507.00301Google Scholar
  15. 36.
    Aspinwall, P.S., Plesser, M.R.: Decompactifications and massless D-branes in hybrid models. http://arxiv.org/abs/0909.0252
  16. 37.
    Aspinwall, P.S., Plesser, M.R.: Elusive worldsheet instantons in heterotic string compactifications. http://arxiv.org/abs/1106.2998
  17. 38.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: The monomial divisor mirror map. Int. Math. Res. Not. 1993(12), 319–337 (1993). http://arxiv.org/abs/alg-geom/9309007 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 39.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory. Nucl. Phys. B416, 414–480 (1994). http://arxiv.org/abs/hep-th/9309097 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 40.
    Aspinwall, P.S., Bridgeland, T., Craw, A., Douglas, M.R., Kapustin, A., Moore, G.W., Gross, M., Segal, G., Szendroi, B., Wilson, P.M.H.: Dirichlet Branes and Mirror Symmetry. Clay Mathematics Monographs, vol. 4. AMS, Providence (2009). http://people.maths.ox.ac.uk/cmi/library/monographs/cmim04c.pdf
  20. 41.
    Aspinwall, P.S., Melnikov, I.V., Plesser, M.R.: (0,2) elephants. J. High Energy Phys. 1201, 060 (2012). http://arxiv.org/abs/1008.2156
  21. 42.
    Aspinwall, P.S., Plesser, M.R., Wang, K.: Mirror symmetry and discriminants. http://arxiv.org/abs/1702.04661
  22. 51.
    Batyrev, V.V.: Quantum cohomology rings of toric manifolds. Astérisque 218, 9–34 (1993). http://arxiv.org/abs/alg-geom/9310004 MathSciNetzbMATHGoogle Scholar
  23. 52.
    Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3, 493–545 (1994). http://arxiv.org/abs/arXiv:alg-geom/9310003 MathSciNetzbMATHGoogle Scholar
  24. 53.
    Batyrev, V.: The stringy Euler number of Calabi-Yau hypersurfaces in toric varieties and the Mavlyutov duality. http://arxiv.org/abs/1707.02602
  25. 54.
    Batyrev, V.V., Materov, E.N.: Toric residues and mirror symmetry. Mosc. Math. J. 2(3), 435–475 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 55.
    Batyrev, V., Nill, B.: Combinatorial aspects of mirror symmetry. http://arxiv.org/abs/math/0703456
  27. 57.
    Beasley, C., Witten, E.: Residues and world-sheet instantons. J. High Energy Phys. 10, 065 (2003). http://arxiv.org/abs/hep-th/0304115 ADSMathSciNetCrossRefGoogle Scholar
  28. 67.
    Benini, F., Bobev, N.: Two-dimensional SCFTs from wrapped branes and c-extremization. J. High Energy Phys. 06, 005 (2013). http://dx.doi.org/10.1007/JHEP06(2013)005; http://arxiv.org/abs/1302.4451Google Scholar
  29. 68.
    Benini, F., Cremonesi, S.: Partition functions of N=(2,2) gauge theories on S2 and vortices. http://arxiv.org/abs/1206.2356
  30. 69.
    Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of 2d N=2 gauge theories. http://arxiv.org/abs/1308.4896
  31. 70.
    Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups. http://arxiv.org/abs/1305.0533
  32. 71.
    Berglund, P., Hubsch, T.: A generalized construction of mirror manifolds. Nucl. Phys. B393, 377–391 (1993). [AMS/IP Stud. Adv. Math.9,327(1998)]. http://dx.doi.org/10.1016/0550-3213(93)90250-S; http://arxiv.org/abs/hep-th/9201014
  33. 72.
    Berglund, P., Hubsch, T.: A generalized construction of Calabi-Yau models and mirror symmetry. SciPost Phys. 4, 009 (2018). http://dx.doi.org/10.21468/SciPostPhys.4.2.009; http://arxiv.org/abs/1611.10300Google Scholar
  34. 73.
    Berglund, P., Candelas, P., de la Ossa, X., Derrick, E., Distler, J., et al.: On the instanton contributions to the masses and couplings of E(6) singlets. Nucl. Phys. B454, 127–163 (1995). http://arxiv.org/abs/hep-th/9505164 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 74.
    Berglund, P., Johnson, C.V., Kachru, S., Zaugg, P.: Heterotic coset models and (0,2) string vacua. Nucl. Phys. B460, 252–298 (1996). http://dx.doi.org/10.1016/0550-3213(95)00641-9; http://arxiv.org/abs/hep-th/9509170 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 77.
    Bershadsky, M., Cecotti, S., Ooguri. H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). http://arxiv.org/abs/hep-th/9309140 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 79.
    Bertolini, M.: Testing the (0,2) mirror map. http://arxiv.org/abs/1806.05850Google Scholar
  38. 80.
    Bertolini, M., Plesser, M.R.: Worldsheet instantons and (0,2) linear models. J. High Energy Phys. 8, 081 (2015) . http://dx.doi.org/10.1007/JHEP08(2015)081; http://arxiv.org/abs/1410.4541Google Scholar
  39. 81.
    Bertolini, M., Plesser, M.R.: (0,2) hybrid models. http://arxiv.org/abs/1712.04976Google Scholar
  40. 82.
    Bertolini, M., Romo, M.: Aspects of (2,2) and (0,2) hybrid models. http://arxiv.org/abs/1801.04100Google Scholar
  41. 84.
    Bertolini, M., Melnikov, I.V., Plesser, M.R.: Hybrid conformal field theories. http://arxiv.org/abs/1307.7063
  42. 85.
    Billera, L.J., Filliman, P., Sturmfels, B.: Constructions and complexity of secondary polytopes. Adv. Math. 83(2), 155–179 (1990). https://doi.org/10.1016/0001-8708(90)90077-Z MathSciNetzbMATHCrossRefGoogle Scholar
  43. 86.
    Blumenhagen, R., Rahn, T.: Landscape study of target space duality of (0,2) heterotic string models. J. High Energy Phys. 1109, 098 (2011). http://arxiv.org/abs/1106.4998 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 87.
    Blumenhagen, R., Schimmrigk, R., Wisskirchen, A. The (0,2) exactly solvable structure of chiral rings, landau-ginzburg theories, and Calabi-Yau manifolds. Nucl. Phys. B461, 460–492 (1996). http://arxiv.org/abs/hep-th/9510055 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 88.
    Blumenhagen, R., Schimmrigk, R., Wisskirchen, A.: (0,2) mirror symmetry. Nucl. Phys. B486, 598–628 (1997) . http://arxiv.org/abs/hep-th/9609167 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 89.
    Blumenhagen, R., Jurke, B., Rahn, T.: Computational tools for cohomology of toric varieties. Adv. High Energy Phys. 2011, 152749 (2011). http://dx.doi.org/10.1155/2011/152749; http://arxiv.org/abs/1104.1187
  47. 94.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)zbMATHCrossRefGoogle Scholar
  48. 97.
    Bradlow, S.B., Daskalopoulos, G.D.: Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Int. J. Math. 2(5), 477–513 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 98.
    Braun, V., Kreuzer, M., Ovrut, B.A., Scheidegger, E.: Worldsheet instantons and torsion curves. Part A: direct computation. J. High Energy Phys. 10, 022 (2007). http://arxiv.org/abs/hep-th/0703182 ADSzbMATHCrossRefGoogle Scholar
  50. 99.
    Braun, A.P., Knapp, J., Scheidegger, E., Skarke, H., Walliser, N.-O.: PALP - a user manual. In: Rebhan, A., Katzarkov, L., Knapp, J., Rashkov, R., Scheidegger, E. (eds.) Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer. World Scientific, Singapore (2012). http://arxiv.org/abs/1205.4147 Google Scholar
  51. 100.
    Braun, V., Kreuzer, M., Ovrut, B.A., Scheidegger, E.: Worldsheet instantons and torsion curves. http://arxiv.org/abs/0801.4154
  52. 102.
    Bryant, R.L.: An introduction to Lie groups and symplectic geometry. In: Geometry and Quantum Field Theory. Proceedings, Graduate Summer School on the Geometry and Topology of Manifolds and Quantum Field Theory, Park City, 22 June–20 July 1991, pp. 7–181. American Mathematical Society, Providence (1991)Google Scholar
  53. 104.
    Buchbinder, E.I., Lin, L., Ovrut, B.A.: Non-vanishing heterotic superpotentials on elliptic fibrations. http://arxiv.org/abs/1806.04669
  54. 111.
    Candelas, P., De La Ossa, X., Font, A., Katz, S.H., Morrison, D.R.: Mirror symmetry for two parameter models. I. Nucl. Phys. B416, 481–538 (1994). http://arxiv.org/abs/hep-th/9308083 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 112.
    Candelas, P., Constantin, A., Mishra, C.: Calabi-Yau threefolds with small hodge numbers. Fortschr. Phys. 66, 1800029 (2018). http://dx.doi.org/10.1002/prop.201800029; http://arxiv.org/abs/1602.06303MathSciNetCrossRefGoogle Scholar
  56. 113.
    Cecotti, S., Vafa, C.: Topological antitopological fusion. Nucl. Phys. B367, 359–461 (1991). http://dx.doi.org/10.1016/0550-3213(91)90021-O ADSzbMATHCrossRefGoogle Scholar
  57. 114.
    Chen, Y.-H., Wilczek, F., Witten, E., Halperin, B.I.: On anyon superconductivity. Int. J. Mod. Phys. B3, 1001 (1989). http://dx.doi.org/10.1142/S0217979289000725 ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Beasley, C., Witten, E.: New instanton effects in supersymmetric QCD. J. High Energy Phys. 0501, 056 (2005). http://dx.doi.org/10.1088/1126-6708/2005/01/056; http://arxiv.org/abs/hep-th/0409149 ADSMathSciNetCrossRefGoogle Scholar
  59. 116.
    Closset, C., Gu, W., Jia, B., Sharpe, E.: Localization of twisted \( \mathcal {N}=\left (0,\;2\right ) \) gauged linear sigma models in two dimensions. J. High Energy Phys. 03, 070 (2016). http://dx.doi.org/10.1007/JHEP03(2016)070; http://arxiv.org/abs/1512.08058Google Scholar
  60. 118.
    Coleman, S.: Aspects of Symmetry. Cambridge University Press, Cambridge (1985). http://dx.doi.org/10.1017/CBO9780511565045Google Scholar
  61. 120.
    Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, 469pp. AMS, Providence (2000)Google Scholar
  62. 121.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  63. 122.
    Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. AMS, Providence (2011)Google Scholar
  64. 134.
    Dijkgraaf, R., Verlinde, H.L., Verlinde, E.P.: Notes on topological string theory and 2-D quantum gravity. Based on lectures given at Spring School on Strings and Quantum Gravity, Trieste, 24 Apr–2 May 1990 and at Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, 28 May–1 Jun 1990Google Scholar
  65. 139.
    Dine, M., Seiberg, N., Wen, X.G., Witten, E.: Nonperturbative effects on the string world sheet. Nucl. Phys. B278, 769 (1986)ADSMathSciNetCrossRefGoogle Scholar
  66. 140.
    Dine, M., Seiberg, N., Wen, X.G., Witten, E.: Nonperturbative effects on the string world sheet. 2. Nucl. Phys. B289, 319 (1987)Google Scholar
  67. 142.
    Distler, J.: Resurrecting (2,0) compactifications. Phys. Lett. B188, 431–436 (1987)ADSMathSciNetCrossRefGoogle Scholar
  68. 143.
    Distler, J.: Notes on (0,2) superconformal field theories. http://arxiv.org/abs/hep-th/9502012
  69. 144.
    Distler, J., Greene, B.R.: Aspects of (2,0) string compactifications. Nucl. Phys. B304, 1 (1988)ADSMathSciNetCrossRefGoogle Scholar
  70. 145.
    Distler, J., Kachru, S.: (0,2) Landau-Ginzburg theory. Nucl. Phys. B413, 213–243 (1994). http://arxiv.org/abs/hep-th/9309110 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 146.
    Distler, J., Kachru, S.: Duality of (0,2) string vacua. Nucl. Phys. B442, 64–74 (1995). http://arxiv.org/abs/hep-th/9501111 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 152.
    Donagi, R., Lu, Z., Melnikov, I.V.: Global aspects of (0,2) moduli space: toric varieties and tangent bundles.http://arxiv.org/abs/1409.4353
  73. 153.
    Donagi, R., Guffin, J., Katz, S., Sharpe, E.: Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties. http://arxiv.org/abs/1110.3752
  74. 154.
    Donagi, R., Guffin, J., Katz, S., Sharpe, E.: A mathematical theory of quantum sheaf cohomology. http://arxiv.org/abs/1110.3751
  75. 156.
    Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D=2 supersymmetric gauge theories. http://arxiv.org/abs/1206.2606
  76. 157.
    Dryden, J.: Fables Ancient and Modern. HardPress Publishing, Los Angeles (2012)Google Scholar
  77. 162.
    Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)CrossRefGoogle Scholar
  78. 178.
    Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  79. 180.
    Gadde, A., Gukov, S.: 2d index and surface operators. http://arxiv.org/abs/1305.0266
  80. 181.
    Gadde, A., Putrov, P.: Exact solutions of (0,2) Landau-Ginzburg models. http://arxiv.org/abs/1608.07753
  81. 182.
    Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. http://arxiv.org/abs/1306.4320
  82. 183.
    Gadde, A., Gukov, S., Putrov, P.: Exact solutions of 2d supersymmetric gauge theories. http://arxiv.org/abs/1404.5314
  83. 184.
    Gadde, A., Gukov, S., Putrov, P.: (0,2) trialities. http://arxiv.org/abs/1310.0818
  84. 185.
    Gaiotto, D., Moore, G.W., Witten, E.: Algebra of the infrared: string field theoretic structures in massive \(\mathcal {N}=(2,2)\) field theory in two dimensions. http://arxiv.org/abs/1506.04087
  85. 186.
    Garavuso, R.S., Sharpe, E.: Analogues of Mathai–Quillen forms in sheaf cohomology and applications to topological field theory. J. Geom. Phys. 92, 1–29 (2015). http://arxiv.org/abs/1310.5754 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. 187.
    Garcia-Etxebarria, I., Hayashi, H., Ohmori, K., Tachikawa, Y., Yonekura, K.: 8d gauge anomalies and the topological Green-Schwarz mechanism. J. High Energy Phys. 11, 177 (2017). http://dx.doi.org/10.1007/JHEP11(2017)177; http://arxiv.org/abs/1710.04218
  87. 189.
    Gates, S.J., Hull, C., Rocek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B248, 157 (1984). http://dx.doi.org/10.1016/0550-3213(84)90592-3Google Scholar
  88. 191.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhauser, Boston (1994). http://dx.doi.org/10.1007/978-0-8176-4771-1 zbMATHCrossRefGoogle Scholar
  89. 196.
    Gerhardus, A., Jockers, H., Ninad, U.: The geometry of gauged linear sigma model correlation functions. http://arxiv.org/abs/1803.10253Google Scholar
  90. 200.
    Gomis, J., Lee, S.: Exact kahler potential from gauge theory and mirror symmetry. J. High Energy Phys. 1304, 019 (2013). http://dx.doi.org/10.1007/JHEP04(2013)019; http://arxiv.org/abs/1210.6022Google Scholar
  91. 210.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  92. 214.
    Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York (2003). Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. http://dx.doi.org/10.1007/978-1-4613-0019-9Google Scholar
  93. 215.
    Gu, W., Sharpe, E.: A proposal for nonabelian mirrors. http://arxiv.org/abs/1806.04678
  94. 216.
    Guffin, J., Katz, S.: Deformed quantum cohomology and (0,2) mirror symmetry. http://arxiv.org/abs/arXiv:0710.2354
  95. 218.
    Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian T n-Spaces. Progress in Mathematics, vol. 122. Birkhäuser, Boston (1994). http://dx.doi.org/10.1007/978-1-4612-0269-1
  96. 219.
    Haase, C., Melnikov, I.V.: The reflexive dimension of a lattice polytope. Ann. Comb. 10(2), 211–217 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 221.
    Harris, J.: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)zbMATHCrossRefGoogle Scholar
  98. 222.
    Hartshorne, R.: Algebraic Geometry, 8th edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  99. 225.
    Herbst, M., Hori, K., Page, D.: Phases of N=2 theories in 1+1 dimensions with boundary. http://arxiv.org/abs/0803.2045
  100. 226.
    Hirzebruch, F.: Ueber eine Klasse von einfach-zusammenhaengenden komplexen Mannigfaltigkeiten. Math. Ann. 124, 77–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 227.
    Hirzebruch, F., Höfer, T.: On the Euler number of an orbifold. Math. Ann. 286(1–3), 255–260 (1990). https://doi.org/10.1007/BF01453575 MathSciNetzbMATHCrossRefGoogle Scholar
  102. 232.
    Hori, K.: Duality in two-dimensional (2,2) supersymmetric non-abelian gauge theories. J. High Energy Phys. 10, 121 (2013). http://dx.doi.org/10.1007/JHEP10(2013)121; http://arxiv.org/abs/1104.2853Google Scholar
  103. 233.
    Hori, K., Kapustin, A.: Duality of the fermionic 2-D black hole and N=2 liouville theory as mirror symmetry. J. High Energy Phys. 0108, 045 (2001). http://arxiv.org/abs/hep-th/0104202ADSMathSciNetCrossRefGoogle Scholar
  104. 234.
    Hori, K., Knapp, J.: Linear sigma models with strongly coupled phases - one parameter models. J. High Energy Phys. 11, 070 (2013). http://dx.doi.org/10.1007/JHEP11(2013)070; http://arxiv.org/abs/1308.6265Google Scholar
  105. 235.
    Hori, K., Tong, D.: Aspects of non-abelian gauge dynamics in two-dimensional N=(2,2) theories. J. High Energy Phys. 05, 079 (2007). http://dx.doi.org/10.1088/1126-6708/2007/05/079; http://arxiv.org/abs/hep-th/0609032 ADSCrossRefGoogle Scholar
  106. 236.
    Hori, K., Vafa, C.: Mirror symmetry. http://arxiv.org/abs/hep-th/0002222
  107. 237.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003). With a preface by VafaGoogle Scholar
  108. 238.
    Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces. Commun. Math. Phys. 167, 301–350 (1995). http://arxiv.org/abs/hep-th/9308122ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. 241.
    Hubsch, T.: Calabi-Yau Manifolds: A Bestiary for Physicists. World Scientific, Singapore (1992)zbMATHCrossRefGoogle Scholar
  110. 248.
    Intriligator, K.A., Seiberg, N.: Lectures on supersymmetric gauge theories and electric-magnetic duality. Nucl. Phys. Proc. Suppl. 45BC, 1–28 (1996). http://arxiv.org/abs/hep-th/9509066 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. 253.
    Jia, B., Sharpe, E., Wu, R.: Notes on nonabelian (0,2) theories and dualities. http://arxiv.org/abs/1401.1511
  112. 254.
    Jockers, H., Kumar, V., Lapan, J.M., Morrison, D.R., Romo, M.: Two-sphere partition functions and Gromov-Witten invariants. http://arxiv.org/abs/1208.6244
  113. 257.
    Jow, S.-Y.: Cohomology of toric line bundles via simplicial Alexander duality. J. Math. Phys. 52, 033506 (2011). http://arxiv.org/abs/1006.0780v1 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. 259.
    Kachru, S., Witten, E.: Computing the complete massless spectrum of a Landau- Ginzburg orbifold. Nucl. Phys. B407, 637–666 (1993). http://arxiv.org/abs/hep-th/9307038 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 260.
    Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290(2), 277–285 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 262.
    Karu, K.: Toric residue mirror conjecture for Calabi-Yau complete intersections. J. Algebraic Geom. 14(4), 741–760 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 264.
    Katz, S.H., Sharpe, E.: Notes on certain (0,2) correlation functions. Commun. Math. Phys. 262, 611–644 (2006). http://arxiv.org/abs/hep-th/0406226 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 265.
    Katzarkov, L., Kontsevich, M., Pantev, T.: Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models. J. Differ. Geom. 105(1), 55–117 (2017). http://arxiv.org/abs/1409.5996 MathSciNetzbMATHCrossRefGoogle Scholar
  119. 266.
    Kawai, T., Mohri, K.: Geometry of (0,2) Landau-Ginzburg orbifolds. Nucl. Phys. B425, 191–216 (1994). http://arxiv.org/abs/hep-th/9402148 ADSMathSciNetzbMATHGoogle Scholar
  120. 268.
    Klyachko, A.A.: Equivariant bundles over toric varieties. Izv. Akad. Nauk SSSR Ser. Mat. 53(5), 1001–1039, 1135 (1989)Google Scholar
  121. 270.
    Knutson, A., Sharpe, E.R.: Sheaves on toric varieties for physics. Adv. Theor. Math. Phys. 2, 865–948 (1998). http://arxiv.org/abs/hep-th/9711036 MathSciNetzbMATHCrossRefGoogle Scholar
  122. 272.
    Krawitz, M., Priddis, N., Acosta, P., Bergin, N., Rathnakumara, H.: FJRW-rings and mirror symmetry. Commun. Math. Phys. 296(1), 145–174 (2010). https://doi.org/10.1007/s00220-009-0929-7 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  123. 273.
    Kreuzer, M., Nill, B.: Classification of toric Fano 5-folds. Adv. Geom. 9(1), 85–97 (2009).  https://doi.org/10.1515/ADVGEOM.2009.005 MathSciNetzbMATHCrossRefGoogle Scholar
  124. 275.
    Kreuzer, M., Skarke, H.: PALP: a package for analyzing lattice polytopes with applications to toric geometry. Comput. Phys. Commun. 157, 87–106 (2004). http://arxiv.org/abs/math/0204356 ADSzbMATHCrossRefGoogle Scholar
  125. 276.
    Kreuzer, M., McOrist, J., Melnikov, I.V., Plesser, M.: (0,2) deformations of linear sigma models. J. High Energy Phys. 1107, 044 (2011). http://dx.doi.org/10.1007/JHEP07(2011)044; http://arxiv.org/abs/1001.2104Google Scholar
  126. 277.
    Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 280.
    Kutasov, D., Lin, J.: (0,2) dynamics from four dimensions. Phys. Rev. D89(8), 085025 (2014). http://dx.doi.org/10.1103/PhysRevD.89.085025; http://arxiv.org/abs/1310.6032Google Scholar
  128. 282.
    Lazarsfeld, R.: Positivity in Algebraic Geometry. I. A Series of Modern Surveys in Mathematics, vol. 48. Springer, Berlin (2004)Google Scholar
  129. 283.
    Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B324, 427 (1989)ADSMathSciNetGoogle Scholar
  130. 286.
    Lindstrom, U., Rocek, M., von Unge, R., Zabzine, M.: Generalized Kahler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269, 833–849 (2007). http://dx.doi.org/10.1007/s00220-006-0149-3; http://arxiv.org/abs/hep-th/0512164 ADSzbMATHCrossRefGoogle Scholar
  131. 287.
    Losev, A., Nekrasov, N., Shatashvili, S.L.: The Freckled instantons. http://arxiv.org/abs/hep-th/9908204Google Scholar
  132. 290.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, 3rd edn. Oxford University Press, Oxford (2017).  https://doi.org/10.1093/oso/9780198794899.001.0001 zbMATHCrossRefGoogle Scholar
  133. 291.
    McOrist, J.: On the effective field theory of heterotic vacua. Lett. Math. Phys. 108(4), 1031–1081 (2018). http://dx.doi.org/10.1007/s11005-017-1025-0; http://arxiv.org/abs/1606.05221
  134. 292.
    McOrist, J., Melnikov, I.V.: Summing the instantons in half-twisted linear sigma models. J. High Energy Phys. 02, 026 (2009). http://arxiv.org/abs/0810.0012 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  135. 293.
    McOrist, J., Melnikov, I.V.: Old issues and linear sigma models. Adv. Theor. Math. Phys. 16, 251–288 (2012). http://arxiv.org/abs/1103.1322 MathSciNetzbMATHCrossRefGoogle Scholar
  136. 296.
    Melnikov, I.V., Plesser, M.R.: The Coulomb branch in gauged linear sigma models. J. High Energy Phys. 0506, 013 (2005). http://dx.doi.org/10.1088/1126-6708/2005/06/013; http://arxiv.org/abs/hep-th/0501238 MathSciNetCrossRefGoogle Scholar
  137. 297.
    Melnikov, I.V., Plesser, M.R.: A-model correlators from the Coulomb branch. J. High Energy Phys. 02, 044 (2006). http://arxiv.org/abs/hep-th/0507187 ADSMathSciNetCrossRefGoogle Scholar
  138. 298.
    Melnikov, I.V., Plesser, M.R.: A (0,2) mirror map. J. High Energy Phys. 1102, 001 (2011). http://dx.doi.org/10.1007/JHEP02(2011)001; http://arxiv.org/abs/1003.1303Google Scholar
  139. 300.
    Melnikov, I.V., Quigley, C., Sethi, S., Stern, M.: Target spaces from chiral gauge theories. J. High Energy Phys. 1302, 111 (2013). http://dx.doi.org/10.1007/JHEP02(2013)111; http://arxiv.org/abs/1212.1212Google Scholar
  140. 306.
    Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Different Faces of Geometry. International Mathematical Series (New York), vol. 3. Kluwer/Plenum, New York (2004). http://dx.doi.org/10.1007/0-306-48658-X_6; http://arxiv.org/abs/math/0403015Google Scholar
  141. 311.
    Morrison, D.R., Plesser, M.R.: Summing the instantons: quantum cohomology and mirror symmetry in toric varieties. Nucl. Phys. B440, 279–354 (1995). http://arxiv.org/abs/hep-th/9412236ADSMathSciNetzbMATHCrossRefGoogle Scholar
  142. 312.
    Morrison, D.R., Plesser, M.R.: Towards mirror symmetry as duality for two dimensional abelian gauge theories. Nucl. Phys. Proc. Suppl. 46, 177–186 (1996). http://arxiv.org/abs/hep-th/9508107ADSMathSciNetzbMATHCrossRefGoogle Scholar
  143. 319.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Trudy Steklov Mat. Inst. 246, 240–262 (2004). http://arxiv.org/abs/math/0302304 MathSciNetzbMATHGoogle Scholar
  144. 323.
    Payne, S.: Moduli of toric vector bundles. Compos. Math. 144(5), 1199–1213 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 324.
    Pestun, V., et al.: Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017). http://dx.doi.org/10.1088/1751-8121/aa63c1; http://arxiv.org/abs/1608.02952 MathSciNetzbMATHCrossRefGoogle Scholar
  146. 329.
    Quigley, C., Sethi, S.: Linear sigma models with torsion. J. High Energy Phys. 1111, 034 (2011). http://arxiv.org/abs/1107.0714 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 330.
    Quigley, C., Sethi, S., Stern, M.: Novel branches of (0,2) theories. J. High Energy Phys. 1209, 064 (2012). http://arxiv.org/abs/1206.3228 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. 332.
    Reid, M.: Young person’s guide to canonical singularities. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). Proceedings of Symposia in Pure Mathematics, vol. 46, pp. 345–414. American Mathematical Society, Providence (1987)Google Scholar
  149. 333.
    Rocek, M., Verlinde, E.P.: Duality, quotients, and currents. Nucl. Phys. B373, 630–646 (1992). http://dx.doi.org/10.1016/0550-3213(92)90269-H; http://arxiv.org/abs/hep-th/9110053 ADSMathSciNetCrossRefGoogle Scholar
  150. 338.
    Schafer-Nameki, S., Weigand, T.: F-theory and 2d (0, 2) theories. J. High Energy Phys. 05, 059 (2016). http://dx.doi.org/10.1007/JHEP05(2016)059; http://arxiv.org/abs/1601.02015Google Scholar
  151. 347.
    Sharpe, E.: Notes on certain other (0,2) correlation functions. http://arxiv.org/abs/hep-th/0605005Google Scholar
  152. 350.
    Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B444, 161–190 (1995). http://arxiv.org/abs/hep-th/9503212ADSMathSciNetzbMATHCrossRefGoogle Scholar
  153. 355.
    Szenes, A., Vergne, M.: Toric reduction and a conjecture of Batyrev and Materov. Invent. Math. 158(3), 453–495 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. 362.
    The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.2) (2018). http://www.sagemath.orgGoogle Scholar
  155. 366.
    Tong, D.: Quantum vortex strings: a review. Ann. Phys. 324, 30–52 (2009). http://dx.doi.org/10.1016/j.aop.2008.10.005; http://arxiv.org/abs/0809.5060 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  156. 378.
    Witten, E.: θ vacua in two-dimensional quantum chromodynamics. Nuovo Cim. A51, 325 (1979). http://dx.doi.org/10.1007/BF02776593
  157. 380.
    Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 385.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988). http://dx.doi.org/10.1007/BF01223371 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  159. 386.
    Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  160. 387.
    Witten, E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A6, 2775–2792 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. 388.
    Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B403, 159–222 (1993). http://arxiv.org/abs/hep-th/9301042 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  162. 390.
    Witten, E.: Mirror manifolds and topological field theory. http://arxiv.org/abs/hep-th/9112056
  163. 392.
    Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. http://arxiv.org/abs/hep-th/9312104
  164. 396.
    Yau, S.-T.: A survey of Calabi-Yau manifolds. In: Surveys in Differential Geometry. Vol. XIII. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surveys in Differential Geometry, vol. 13, pp. 277–318. Internatinal Press, Somerville (2009). http://dx.doi.org/10.4310/SDG.2008.v13.n1.a9 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ilarion V. Melnikov
    • 1
  1. 1.Department of Physics and AstronomyJames Madison UniversityHarrisonburgUSA

Personalised recommendations