Development of a Mobile Functional Near-Infrared Spectroscopy Prototype

  • Nils Volkening
  • Anirudh Unni
  • Jochem W. Rieger
  • Sebastian Fudickar
  • Andreas Hein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11253)


Driving is a complex and cognitively demanding task. It is important to assess the cognitive state of the driver in order to develop cognitive technical systems that can adapt to different cognitive states of the driver. For this purpose, we have developed a mobile functional near-infrared spectroscopy (mofNIRS) prototype. This paper describes the improvements of this mobile prototype with freely placeable optodes on a subject’s head and the results of an evaluation study. We conducted a motor cortex experiment with four subjects, whereby the mobile prototype was mounted on the right hemisphere and a commercial, stationary fNIRS on the left hemisphere above the motor cortex area. One data set had to be discarded due to incorrect synchronization between both systems. The results of the remaining three subjects are presented and discussed in this paper. Here, we report the results from the time-series and Statistical Parametric Mapping (SPM) analyses, which shows t-values with high differentiability of the Results. Furthermore, both analysis methods show comparable results between the commercial system and the mobile prototype.


Mobile fNIRS prototype Motor cortical activity Validation study Driver cognitive states 



This work was supported by the funding initiative Niedersächsisches Vorab of the Volkswagen Foundation and the Ministry of Science and Culture of Lower Saxony as a part of the Interdisciplinary Research Centre on Critical Systems Engineering for Socio–Technical Systems.


  1. 1.
    Anirudh, U., et al.: Brain activity measured with fNIRS for the prediction of cognitive workload. In: 6th IEEE Conference on Cognitive Infocommunications (2015)Google Scholar
  2. 2.
    Atsumori, H., et al.: Development of a multi-channel, portable optical topography system. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, pp. 3362–3364 (2007)Google Scholar
  3. 3.
    Barker, J.W., Aarabi, A., Huppert, T.J.: Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomed. Opt. Express 4(8), 1366–1379 (2013)CrossRefGoogle Scholar
  4. 4.
    Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10(4), 433–436 (1997)CrossRefGoogle Scholar
  5. 5.
    Brigadoi, S., Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R.: Exploring the role of primary and supplementary motor areas in simple motor tasks with fNIRS. Cogn. Process. 13(Suppl 1), S97–S101 (2012)CrossRefGoogle Scholar
  6. 6.
    Brookhuis, K.A., De Waard, D., Janssen, W.H.: Behavioural Impacts of Advanced Driver Assistance Systems-an overview (2001)Google Scholar
  7. 7.
    Cohen, I.R., Lajtha, A.: Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol. 645. Springer, Dordrecht (2009). Scholar
  8. 8.
    Cui, X., Bray, S., Bryant, D.M., Glover, G.H., Reiss, A.L.: A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54(4), 2808–2821 (2011)CrossRefGoogle Scholar
  9. 9.
    Custo, A., Wells, W.M., Barnett, A.H., Hillman, E.M.C., Boas, D.A.: Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging. Appl. Opt. 45(19), 4747–4755 (2006)CrossRefGoogle Scholar
  10. 10.
    Cutini, S., Moro, S., Bisconti, S.: Review: functional near infrared optical imaging in cognitive neuroscience: an introductory review. J. Near Infrared Spectrosc. 20(1), 75–92 (2012)CrossRefGoogle Scholar
  11. 11.
    Eggebrecht, A.T., et al.: A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. NeuroImage 61(4), 1120–1128 (2012)CrossRefGoogle Scholar
  12. 12.
    Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63(2), 921–935 (2012)CrossRefGoogle Scholar
  13. 13.
    Franceschini, M.A., Toronov, V., Filiaci, M., Gratton, E., Fantini, S.: On-line optical imaging of the human brain with 160-ms temporal resolution. Opt. Express 6(3), 49–57 (2000)CrossRefGoogle Scholar
  14. 14.
    Freyman, R.: Möglichkeit und Grenzen von Fahrerassistenz- und Aktiven Sicherheitssystemen. Aktive Sicherheit durch Fahrerassistenz (2004)Google Scholar
  15. 15.
    Goodwin, J.R., Gaudet, C.R., Berger, A.J.: Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced. Neurophotonics 1(1), 15002 (2014)CrossRefGoogle Scholar
  16. 16.
    Habermehl, C., et al.: Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography. NeuroImage 59(4), 3201–3211 (2012)CrossRefGoogle Scholar
  17. 17.
    Huppelsberg, J., Walter, K.: Kurzlehrbuch Physiologie. Thieme electronic book library. Thieme, Stuttgart [u.a.] (2009)Google Scholar
  18. 18.
    Krüger, A., et al.: Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system. In: Digital Holography and Three-Dimensional Imaging. Part of Biomedical Optics and 3-D imaging, 28 April–2 May 2012, Miami, Florida, United States. OSA annual topical meeting. OSA technical digest (online). OSA The Optical Society, Washington, DC, BM4A.3 (2012).
  19. 19.
    Leff, D.R., et al.: Assessment of the cerebral cortex during motor task behaviours in adults. A systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage 54(4), 2922–2936 (2011)CrossRefGoogle Scholar
  20. 20.
    Mehnert, J., et al.: Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain. Brain Dev. 35(10), 894–904 (2013)CrossRefGoogle Scholar
  21. 21.
    Okada, E., Delpy, D.T.: Near-infrared light propagation in an adult head model II Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl. Opt. 42(16), 2915 (2003)CrossRefGoogle Scholar
  22. 22.
    Piper, S.K., et al.: A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Celebrating 20 Years Funct. Near Infrared Spectrosc. (fNIRS) 85(Pt 1), 64–71 (2014)Google Scholar
  23. 23.
    Roy, C.S., Sherrington, C.S.: On the regulation of the blood-supply of the brain. J. Physiol. 11(1–2), 85–158 (1890)CrossRefGoogle Scholar
  24. 24.
    Sassaroli, A., Fantini, S.: Comment on the modified Beer-Lambert law for scattering media. Phys. Med. Biol. 49(14), N255–N257 (2004)CrossRefGoogle Scholar
  25. 25.
    Schecklmann, M., Mann, A., Langguth, B., Ehlis, A.-C., Fallgatter, A.J., Haeussinger, F.B.: The temporal muscle of the head can cause artifacts in optical imaging studies with functional near-infrared spectroscopy. Front. Hum. Neurosci. 11, 456 (2017)CrossRefGoogle Scholar
  26. 26.
    Tachtsidis, I., Leung, T.S., Devoto, L., Delpy, D.T., Elwell, C.E.: Measurement of frontal lobe functional activation and related systemic effects. A near-infrared spectroscopy investigation. Adv. Exp. Med. Biol. 614, 397–403 (2008)CrossRefGoogle Scholar
  27. 27.
    Tachtsidis, I., Scholkmann, F.: Erratum: publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3(3), 39–801 (2016)Google Scholar
  28. 28.
    Tak, S., Ye, J.C.: Statistical analysis of fNIRS data. A comprehensive review. NeuroImage 85(Pt 1), 72–91 (2014)CrossRefGoogle Scholar
  29. 29.
    Villringer, A., Planck, J., Hock, C., Schleinkofer, L., Dirnagl, U.: Near infrared spectroscopy (NIRS) A new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154(1–2), 101–104 (1993)CrossRefGoogle Scholar
  30. 30.
    Volkening, N., Unni, A., Becker, S., Rieger, J.W., Fudickar, S., Hein, A.: Development of a mobile functional near-infrared spectroscopy prototype and its initial evaluation. In: Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference on - PETRA 2018, pp. 214–221. ACM Press, New York (2018).
  31. 31.
    Volkening, N., Unni, A., Löffler, B.S., Fudickar, S., Rieger, J.W., Hein, A.: Characterizing the Influence of Muscle Activity in fNIRS Brain Activation Measurements. IFAC-PapersOnLine 49(11), 84–88 (2016)CrossRefGoogle Scholar
  32. 32.
    Wyser, D., Lambercy, O., Scholkmann, F., Wolf, M., Gassert, R.: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths. Neurophotonics 4(4), 41413 (2017)CrossRefGoogle Scholar
  33. 33.
    Xu, Y., Graber, H.L., Barbour, R.L.: nirsLAB. A computing environment for fNIRS neuroimaging data analysis. In Biomedical Optics, 26–30 April 2014, Miami, Florida, United States. OSA technical digest (online). OSA The Optical Society, Washington, DC, BM3A.1 (2014).
  34. 34.
    Zijlstra, W.G., Buursma, A., van Assendelft, O.W.: Visible and near infrared absoption spectra of human and animal haemoglobin. Determination and application. VSP, Utrecht (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nils Volkening
    • 1
  • Anirudh Unni
    • 2
  • Jochem W. Rieger
    • 2
  • Sebastian Fudickar
    • 3
  • Andreas Hein
    • 1
  1. 1.OFFIS Institute for Information TechnologyOldenburgGermany
  2. 2.Applied Neurocognitive Psychology LabUniversity of OldenburgOldenburgGermany
  3. 3.Division of Assistance Systems and Medical Device TechnologyUniversity of OldenburgOldenburgGermany

Personalised recommendations