Advertisement

Exploiting Security Vulnerabilities in Intermittent Computing

  • Archanaa S. Krishnan
  • Patrick Schaumont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11348)

Abstract

Energy harvesters have enabled widespread utilization of ultra-low-power devices that operate solely based on the energy harvested from the environment. Due to the unpredictable nature of harvested energy, these devices experience frequent power outages. They resume execution after a power loss by utilizing intermittent computing techniques and non-volatile memory. In embedded devices, intermittent computing refers to a class of computing that stores a snapshot of the system and application state, as a checkpoint, in non-volatile memory, which is used to restore the system and application state in case of power loss. Although non-volatile memory provides tolerance against power failures, they introduce new vulnerabilities to the data stored in them. Sensitive data, stored in a checkpoint, is available to an attacker after a power loss, and the state-of-the-art intermittent computing techniques fail to consider the security of checkpoints. In this paper, we utilize the vulnerabilities introduced by the intermittent computing techniques to enable various implementation attacks. For this study, we focus on TI’s Compute Through Power Loss utility as an example of the state-of-the-art intermittent computing solution. First, we analyze the security, or lack thereof, of checkpoints in the latest intermittent computing techniques. Then, we attack the checkpoints and locate sensitive data in non-volatile memory. Finally, we attack AES using this information to extract the secret key. To the best of our knowledge, this work presents the first systematic analysis of the seriousness of security threats present in the field of intermittent computing.

Keywords

Intermittent computing Attacking checkpoints Embedded system security Non-volatile memory 

Notes

Acknowledgements

This work was supported in part by NSF grant 1704176 and SRC GRC Task 2712.019.

References

  1. [ADM+10]
    Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.: Single-bit DFA using multiple-byte laser fault injection. In: 2010 IEEE International Conference on Technologies for Homeland Security (HST), pp. 113–119, Novomber 2010Google Scholar
  2. [AKSP18]
    Afzali-Kusha, H., Shafaei, A., Pedram, M.: A 125mV 2ns-access-time 16Kb SRAM design based on a 6T hybrid TFET-FinFET cell. In: 2018 19th International Symposium on Quality Electronic Design (ISQED), pp. 280–285, March 2018Google Scholar
  3. [BBB+10]
    Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack on AES with single-bit induced faults. In: 2010 Sixth International Conference on Information Assurance and Security, pp. 167–172, August 2010Google Scholar
  4. [BBGH+14]
    Beringuier-Boher, N., et al.: Voltage glitch attacks on mixed-signal systems. In: 2014 17th Euromicro Conference on Digital System Design, pp. 379-386, August 2014Google Scholar
  5. [BWM+15]
    Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli, D., Benini, L.: Hibernus: sustaining computation during intermittent supply for energy-harvesting systems. IEEE Embed. Syst. Lett. 7(1), 15–18 (2015)CrossRefGoogle Scholar
  6. [CLG17]
    Chaari, M.Z., Lahiani, M., Ghariani, H.: Energy harvesting from electromagnetic radiation emissions by compact flouresent lamp. In: 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI), pp. 272–275, February 2017Google Scholar
  7. [CS11]
    Chhabra, S., Solihin, Y.: i-NVMM: a secure non-volatile main memory system with incremental encryption. In: 38th International Symposium on Computer Architecture (ISCA 2011), San Jose, CA, USA, 4–8 June 2011, pp. 177–188 (2011)Google Scholar
  8. [DHP+15]
    Davi, L., et al.: HAFIX: hardware-assisted flow integrity extension. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2015Google Scholar
  9. [DLV03]
    Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45203-4_23CrossRefGoogle Scholar
  10. [DR02]
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-662-04722-4CrossRefzbMATHGoogle Scholar
  11. [EFPT12]
    El Defrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and minimal architecture for (establishing a dynamic) root of trust. In: NDSS: 19th Annual Network and Distributed System Security Symposium, San Diego, USA, 5–8 February 2012 (2012)Google Scholar
  12. [GC16]
    Ghosh, S., Chakrabarty, A.: Green energy harvesting from ambient RF radiation. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–4, January 2016Google Scholar
  13. [GGK17]
    Ghodsi, Z., Garg, S., Karri, R.: Optimal checkpointing for secure intermittently-powered IoT devices. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 376–383, November 2017Google Scholar
  14. [Gir05]
    Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005).  https://doi.org/10.1007/11506447_4CrossRefGoogle Scholar
  15. [HHI+17]
    Habibzadeh, M., Hassanalieragh, M., Ishikawa, A., Soyata, T., Sharma, G.: Hybrid solar-wind energy harvesting for embedded applications: supercapacitor-based system architectures and design tradeoffs. IEEE Circuits Syst. Mag. 17(4), 29–63 (2017)CrossRefGoogle Scholar
  16. [Hic17]
    Hicks, M.: Clank: architectural support for intermittent computation. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA 2017, pp. 228–240. ACM, New York (2017)Google Scholar
  17. [HNT+13]
    Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C., Seifert, J.-P.: Breaking and entering through the silicon. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & #38; Communications Security, CCS 2013, pp. 733–744. ACM, New York (2013)Google Scholar
  18. [JM17]
    Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar energy harvesting. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017Google Scholar
  19. [JRR14]
    Jayakumar, H., Raha, A., Raghunathan, V.: QUICKRECALL: a low overhead HW/SW approach for enabling computations across power cycles in transiently powered computers. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 330–335, January 2014Google Scholar
  20. [KJJ99]
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  21. [KJJL05]
    Kim, K., Jeong, G., Jeong, H., Lee, S.: Emerging memory technologies. In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, pp. 423–426, September 2005Google Scholar
  22. [KKSK15]
    Kannan, S., Karimi, N., Sinanoglu, O., Karri, R.: Security vulnerabilities of emerging nonvolatile main memories and countermeasures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(1), 2–15 (2015)CrossRefGoogle Scholar
  23. [LR15]
    Lucia, B., Ransford, B.: A simpler, safer programming and execution model for intermittent systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015, pp. 575–585. ACM, New York (2015)Google Scholar
  24. [MA18]
    Mittal, S., Alsalibi, A.I.: A survey of techniques for improving security of non-volatile memories. J. Hardw. Syst. Secur. 2(2), 179–200 (2018)CrossRefGoogle Scholar
  25. [NNM+18]
    Navarro, C., et al.: InGaAs capacitor-less DRAM cells TCAD demonstration. IEEE J. Electron Dev. Soc. 6, 884–892 (2018)CrossRefGoogle Scholar
  26. [RSF11]
    Ransford, B., Sorber, J., Kevin, F.: Mementos: system support for long-running computation on RFID-scale devices. SIGARCH Comput. Archit. News 39(1), 159–170 (2011)CrossRefGoogle Scholar
  27. [SSAQ02]
    Samyde, D., Skorobogatov, S., Anderson, R., Quisquater, J.J.: On a new way to read data from memory. In: Proceedings of First International IEEE Security in Storage Workshop, pp. 65–69, December 2002Google Scholar
  28. [SVRR13]
    Sharad, M., Venkatesan, R., Raghunathan, A., Roy, K.: Multi-level magnetic RAM using domain wall shift for energy-efficient, high-density caches. In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 64–69, September 2013Google Scholar
  29. [Tex17a]
    Texas Instruments: MSP MCU FRAM Utilities (2017)Google Scholar
  30. [Tex17b]
    Texas Instruments: MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User’s Guide (2017)Google Scholar
  31. [WH16]
    Van Der Woude, J., Hicks, M.: Intermittent computation without hardware support or programmer intervention. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 17–32. USENIX Association, Savannah (2016)Google Scholar
  32. [YCCC07]
    Yang, C.F., Chen, K.H., Chen, Y.C., Chang, T.C.: Fabrication of one-transistor-capacitor structure of nonvolatile TFT Ferroelectric RAM devices using BA(Zr0.1 Ti0.9)O3 gated oxide film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1726–1730 (2007)CrossRefGoogle Scholar
  33. [YHP09]
    Yun, S.-N., Ham, Y.-B., Park, J.H.: Energy harvester using PZT actuator with a cantilver. In: 2009 ICCAS-SICE, pp. 5514–5517, August 2009Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations