Advertisement

NEON SIKE: Supersingular Isogeny Key Encapsulation on ARMv7

  • Amir Jalali
  • Reza Azarderakhsh
  • Mehran Mozaffari Kermani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11348)

Abstract

We present a highly-optimized implementation of Supersingular Isogeny Key Encapsulation (SIKE) mechanism on ARMv7 family of processors. We exploit the state-of-the-art implementation techniques and processor capabilities to efficiently develop post-quantum key encapsulation scheme on 32-bit ARMv7 Cortex-A processors. We benchmark our results on two popular ARMv7-powered cores. Our benchmark results show significant performance improvement of the key encapsulation mechanism in comparison with the portable implementation. In particular, we achieve almost 7.5 times performance improvement of the entire protocol over the SIKE 503-bit prime field on a Cortex-A8 core.

Keywords

ARM assembly Embedded device Key encapsulation Post-quantum cryptography Supersingular isogeny-based cryptosystem 

Notes

Acknowledgment

The authors would like to thank the reviewers for their comments. This work is supported in parts by grants from NIST-60NANB16D246 and ARO W911NF-17-1-0311.

References

  1. 1.
    Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. IACR Cryptology ePrint Archive 2018, 313 (2018). https://eprint.iacr.org/2018/313
  2. 2.
    ARM Limited: Cortex-A15 Technical Reference Manual (2010). http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf. Accessed June 2018
  3. 3.
    ARM Limited: Cortex-A8 Technical Reference Manual (2010). http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf. Accessed June 2018
  4. 4.
    Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-resistant key-exchange protocol on embedded systems. Technical report (2014). http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
  5. 5.
    Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography. NIST submissions (2017)Google Scholar
  6. 6.
    Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_19CrossRefGoogle Scholar
  7. 7.
    Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies on elliptic curves. arXiv preprint arXiv:1807.03038 (2018)
  8. 8.
    Bos, J.W., Friedberger, S.: Fast arithmetic modulo \(2^{x}p^{y}\pm 1\). In: 24th IEEE Symposium on Computer Arithmetic, ARITH 2017, London, United Kingdom, pp. 148–155 (2017)Google Scholar
  9. 9.
    Bos, J.W., Friedberger, S.: Arithmetic considerations for isogeny based cryptography. IEEE Trans. Comput. (2018)Google Scholar
  10. 10.
    Bos, J.W., Montgomery, P.L., Shumow, D., Zaverucha, G.M.: Montgomery multiplication using vector instructions. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 471–489. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_24CrossRefGoogle Scholar
  11. 11.
    Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_21CrossRefGoogle Scholar
  14. 14.
    Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A faster software implementation of the supersingular isogeny diffie-hellman key exchange protocol. IEEE Trans. Comput. (2017)Google Scholar
  15. 15.
    Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_3CrossRefGoogle Scholar
  16. 16.
    Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_1CrossRefGoogle Scholar
  17. 17.
    Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M.: Efficient post-quantum undeniable signature on 64-Bit ARM. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 281–298. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72565-9_14CrossRefGoogle Scholar
  18. 18.
    Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie-Hellman key exchange on 64-bit arm. IEEE Trans. Dependable Secure Comput. (2017)Google Scholar
  19. 19.
    Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization project (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
  20. 20.
    Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25405-5_2CrossRefzbMATHGoogle Scholar
  21. 21.
    Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_10CrossRefzbMATHGoogle Scholar
  22. 22.
    Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient finite field multiplication for isogeny based post quantum cryptography. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064, pp. 193–207. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55227-9_14CrossRefzbMATHGoogle Scholar
  23. 23.
    Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. 64–I(1), 86–99 (2017)CrossRefGoogle Scholar
  24. 24.
    Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 88–103. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_6CrossRefGoogle Scholar
  25. 25.
    Naehrig, M., et al.: FrodoKEM: practical quantum-secure key encapsulation from generic lattices. NIST submissions (2017)Google Scholar
  26. 26.
    Poppelmann, T., et al.: Newhope. NIST submissions (2017)Google Scholar
  27. 27.
    Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive 2006, 145 (2006)Google Scholar
  28. 28.
    Seo, H., Liu, Z., Großschädl, J., Choi, J., Kim, H.: Montgomery modular multiplication on ARM-NEON revisited. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 328–342. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15943-0_20CrossRefGoogle Scholar
  29. 29.
    Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications for faster post-quantum supersingular isogeny key exchange. IACR Cryptology ePrint Archive 2018, 700 (2018)Google Scholar
  30. 30.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-09494-6CrossRefzbMATHGoogle Scholar
  31. 31.
    Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci. 410(50), 5285–5297 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273, A238–A241 (1971)zbMATHGoogle Scholar
  33. 33.
    Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70972-7_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Amir Jalali
    • 1
  • Reza Azarderakhsh
    • 1
  • Mehran Mozaffari Kermani
    • 2
  1. 1.Department of Computer and Electrical Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of Computer Science and EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations