Advertisement

Differential Fault Attack on SKINNY Block Cipher

  • Navid Vafaei
  • Nasour Bagheri
  • Sayandeep Saha
  • Debdeep Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11348)

Abstract

SKINNY is a family of tweakable lightweight block ciphers, proposed in CRYPTO 2016. The proposal of SKINNY describes two block size variants of 64 and 128 bits as well as three options for tweakey. In this paper, we present differential fault analysis (DFA) of four SKINNY variants – SKINNY 64-64, SKINNY 128-128, SKINNY 64-128 and SKINNY 128-256. The attack model of tweakable block ciphers allow the access and full control of the tweak by the attacker. Respecting this attack model, we assume a fixed tweak for the attack window. With this assumption, extraction of the master key of SKINNY requires about 10 nibble fault injections on average for 64-bit versions of the cipher, whereas the 128-bit versions require roughly 21 byte fault injections. The attacks were validated through extensive simulation. To the best of authors’ knowledge, this is the first DFA attack on SKINNY tweakable block cipher family and, in fact, any practical realization of tweakable block ciphers.

Keywords

Block cipher Differential fault attack SKINNY 

References

  1. 1.
    Ali, S.S., Mukhopadhyay, D.: A differential fault analysis on AES key schedule using single fault. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 35–42. IEEE (2011)Google Scholar
  2. 2.
    Ankele, R., et al.: Related-key impossible-differential attack on reduced-round SKINNY. Technical report, Cryptology ePrint Archive, Report 2016/1127 (2016). http://eprint.iacr.org/2016/1127, 2017
  3. 3.
    Bagheri, N., Ebrahimpour, R., Ghaedi, N.: New differential fault analysis on present. EURASIP J. Adv. Sig. Process. 2013(1), 145 (2013)CrossRefGoogle Scholar
  4. 4.
    Bagheri, N., Ghaedi, N., Sanadhya, S.K.: Differential fault analysis of SHA-3. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 253–269. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26617-6_14CrossRefGoogle Scholar
  5. 5.
    Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_5CrossRefGoogle Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052259CrossRefGoogle Scholar
  7. 7.
    Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45126-6_12CrossRefGoogle Scholar
  8. 8.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_4CrossRefGoogle Scholar
  9. 9.
    Chen, H., Feng, J., Rijmen, V., Liu, Y., Fan, L., Li, W.: Improved fault analysis on SIMON block cipher family. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 16–24. IEEE (2016)Google Scholar
  10. 10.
    De Santis, F., Guillen, O.M., Sakic, E., Sigl, G.: Ciphertext-only fault attacks on PRESENT. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 85–108. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16363-5_6CrossRefGoogle Scholar
  11. 11.
    Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_14CrossRefGoogle Scholar
  12. 12.
    Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity analysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 49–58. IEEE (2014)Google Scholar
  13. 13.
    Hajra, S., et al.: DRECON: DPA resistant encryption by construction. In: Pointcheval, David, Vergnaud, Damien (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 420–439. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_25CrossRefGoogle Scholar
  14. 14.
    Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for bit-serial implementations of SPN-based primitives - applications to AES, PRESENT and SKINNY. Cryptology ePrint Archive, Report 2017/600 (2017)Google Scholar
  15. 15.
    Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_15CrossRefGoogle Scholar
  16. 16.
    Korkikian, R., Pelissier, S., Naccache, D.: Blind fault attack against SPN ciphers. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 94–103. IEEE (2014)Google Scholar
  17. 17.
    Kumar, R., Jovanovic, P., Burleson, W., Polian, I.: Parametric Trojans for fault-injection attacks on cryptographic hardware. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 18–28. IEEE (2014)Google Scholar
  18. 18.
    Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9_22CrossRefGoogle Scholar
  19. 19.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_3CrossRefGoogle Scholar
  20. 20.
    Liu, G., Ghosh, M., Ling, S.: Security analysis of SKINNY under related-tweakey settings. Technical report, Cryptology ePrint Archive, Report 2016/1108 (2016). http://eprint.iacr.org/2016/1108
  21. 21.
    Patranabis, S., Roy, D.B., Mukhopadhyay, D.: Using tweaks to design fault resistant ciphers. In: 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 585–586. IEEE (2016)Google Scholar
  22. 22.
    Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY block cipher. Technical report, Cryptology ePrint Archive, Report 2016/1120 (2016)Google Scholar
  23. 23.
    Saha, D., Chowdhury, D.R.: Diagonal fault analysis of Gr\(\oslash \)stl in dedicated MAC mode. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5–7 May 2015, pp. 100–105 (2015)Google Scholar
  24. 24.
    Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the advanced encryption standard. IACR Cryptology ePrint Archive 2009(581) (2009)Google Scholar
  25. 25.
    Song, L., Hu, L.: Differential fault attack on the PRINCE block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 43–54. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40392-7_4CrossRefGoogle Scholar
  26. 26.
    Takahashi, J., Fukunaga, T.: Improved differential fault analysis on CLEFIA. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2008, pp. 25–34. IEEE (2008)Google Scholar
  27. 27.
    Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of SKINNY. Technical report, Cryptology ePrint Archive, Report 2016/1115 (2016). http://eprint.iacr.org/2016/1115
  28. 28.
    Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21040-2_15CrossRefGoogle Scholar
  29. 29.
    Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the families of Simon and speck ciphers. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 40–48. IEEE (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Navid Vafaei
    • 1
  • Nasour Bagheri
    • 1
    • 2
  • Sayandeep Saha
    • 3
  • Debdeep Mukhopadhyay
    • 3
  1. 1.Electrical Engineering DepartmentShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.School of Computer ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations