Advertisement

Forward Secure Searchable Encryption Using Key-Based Blocks Chain Technique

  • Siyi Lv
  • Yanyu Huang
  • Bo Li
  • Yu Wei
  • Zheli Liu
  • Joseph K. Liu
  • Dong Hoon Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11337)

Abstract

Searchable Symmetric Encryption (SSE) has been widely applied in the encrypted database for exact queries or even range queries in practice. In spite of it has excellent efficiency and complete functionality, it always suffers from information leakages. Some recent attacks point out that forward privacy is the vital security goal. However, there are only several schemes achieving this security. In this paper, we propose a new flexible forward secure SSE scheme referred to as “FFSSE”, which has the best performance in literature, such as fast search operation, fast token generation and O(1) update complexity. It also supports both add and delete operations in the unique instance. Technically, we exploit a novel “key-based blocks chain” technique based on symmetric cryptographic primitive, which can be deployed in arbitrary index tree structures or key-value structures directly to guarantee forward privacy.

Keywords

Searchable encryption Keyword search Forward privacy Searchable Symmetric Encryption 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61672300), and National Natural Science Foundation of Tianjin (No. 16JCYBJC15500).

References

  1. 1.
    Fu, Z., Wu, X., Wang, Q., Ren, K.: Enabling central keyword-based semantic extension search over encrypted outsourced data. IEEE Trans. Inf. Forensics Secur. 12(12), 2986–2997 (2017)CrossRefGoogle Scholar
  2. 2.
    Fu, Z., Wu, X., Guan, C., Sun, X., Ren, K.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. 11(12), 2706–2716 (2016)CrossRefGoogle Scholar
  3. 3.
    Xu, P., Wu, Q., Wang, W., Susilo, W., Domingo-Ferrer, J., Jin, H.: Generating searchable public-key ciphertexts with hidden structures for fast keyword search. IEEE Trans. Inf. Forensics Secur 10(9), 1993–2006 (2015)CrossRefGoogle Scholar
  4. 4.
    Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS vol. 14, pp. 23–26 (2014)Google Scholar
  5. 5.
    Song, X.D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: S&P (2000)Google Scholar
  6. 6.
    Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis, M.: Practical private range search revisited. In: SIGMOD, pp. 185–198 (2016)Google Scholar
  7. 7.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS, pp. 23–26 (2014)Google Scholar
  8. 8.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. CCS 19(5), 895–934 (2011)Google Scholar
  9. 9.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: USENIX Security (2016)Google Scholar
  10. 10.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_30CrossRefGoogle Scholar
  11. 11.
    Bost, R.: \(\Sigma o\phi o\varsigma -\)forward secure searchable encryption. In: CCS, pp. 1143–1154 (2016)Google Scholar
  12. 12.
    Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: round-optimal oblivious RAM with applications to searchable encryption. Cryptology (2015)Google Scholar
  13. 13.
    Lai, R.W.F., Chow, S.S.M.: Forward-secure searchable encryption on labeled bipartite graphs. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 478–497. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_24CrossRefGoogle Scholar
  14. 14.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: CCS, pp. 965–976 (2016)Google Scholar
  15. 15.
    Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32946-3_21CrossRefGoogle Scholar
  16. 16.
    Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via blind storage. In: S&P, pp. 639–654 (2014)Google Scholar
  17. 17.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Siyi Lv
    • 1
  • Yanyu Huang
    • 1
  • Bo Li
    • 1
  • Yu Wei
    • 1
  • Zheli Liu
    • 1
  • Joseph K. Liu
    • 2
  • Dong Hoon Lee
    • 3
  1. 1.College of Computer and Control EngineeringNankai UniversityTianjinChina
  2. 2.Computer ScienceThe Monesh UniversityMelbourneAustralia
  3. 3.Information SecurityKorea UniversitySeoulKorea

Personalised recommendations