Advertisement

Evaluating the Impact of Intrusion Sensitivity on Securing Collaborative Intrusion Detection Networks Against SOOA

  • David Madsen
  • Wenjuan Li
  • Weizhi Meng
  • Yu Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11337)

Abstract

Cyber attacks are greatly expanding in both size and complexity. To handle this issue, research has been focused on collaborative intrusion detection networks (CIDNs), which can improve the detection accuracy of a single IDS by allowing various nodes to communicate with each other. While such collaborative system or network is vulnerable to insider attacks, which can significantly reduce the advantages of a detector. To protect CIDNs against insider attacks, one potential way is to enhance the trust evaluation among IDS nodes, i.e., by emphasizing the impact of expert nodes. In this work, we adopt the notion of intrusion sensitivity that assigns different values of detection capability relating to particular attacks, and evaluate its impact on defending against a special On-Off attack (SOOA). In the evaluation, we investigate the impact of intrusion sensitivity in a simulated CIDN environment, and experimental results demonstrate that the use of intrusion sensitivity can help enhance the security of CIDNs under adversarial scenarios, like SOOA.

Keywords

Intrusion detection Collaborative network Insider attack Intrusion sensitivity Challenge-based trust mechanism 

References

  1. 1.
    Chun, B., Lee, J., Weatherspoon, H., Chun, B.N.: Netbait: a distributed worm detection service. Technical report IRB-TR-03-033, Intel Research Berkeley (2003)Google Scholar
  2. 2.
    Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45748-8_24CrossRefGoogle Scholar
  3. 3.
    Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: DEXA Workshop, pp. 692–697 (2006)Google Scholar
  4. 4.
    Fadlullah, Z.M., Taleb, T., Vasilakos, A.V., Guizani, M., Kato, N.: DTRAB: combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Trans. Netw. 18(4), 1234–1247 (2010)CrossRefGoogle Scholar
  5. 5.
    Friedberg, I., Skopik, F., Settanni, G., Fiedler, R.: Combating advanced persistent threats: from network event correlation to incident detection. Comput. Secur. 48, 35–47 (2015)CrossRefGoogle Scholar
  6. 6.
    Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust management for host-based collaborative intrusion detection. In: De Turck, F., Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 109–122. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87353-2_9CrossRefGoogle Scholar
  7. 7.
    Fung, C.J., Zhang, J., Aib, I., Boutaba, R.: Robust and scalable trust management for collaborative intrusion detection. In: Proceedings of the 11th IFIP/IEEE International Conference on Symposium on Integrated Network Management (IM), pp. 33–40 (2009)Google Scholar
  8. 8.
    Ghosh, A.K., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proceedings of Annual Computer Security Applications Conference (ACSAC), pp. 259–267 (1998)Google Scholar
  9. 9.
    Gong, F.: Next Generation Intrusion Detection Systems (IDS). McAfee Network Security Technologies Group (2003)Google Scholar
  10. 10.
    Gou, Z., Ahmadon, M.A.B., Yamaguchi, S., Gupta, B.B.: A Petri net-based framework of intrusion detection systems. In: Proceedings of the 4th IEEE Global Conference on Consumer Electronics, pp. 579–583 (2015)Google Scholar
  11. 11.
    Huebsch, R., et al.: The architecture of PIER: an internet-scale query processor. In: Proceedings of the 2005 Conference on Innovative Data Systems Research (CIDR), pp. 28–43 (2005)Google Scholar
  12. 12.
    Li, Z., Chen, Y., Beach, A.: Towards scalable and robust distributed intrusion alert fusion with good load balancing. In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense (LSAD), pp. 115–122 (2006)Google Scholar
  13. 13.
    Li, W., Meng, Y., Kwok, L.-F.: Enhancing trust evaluation using intrusion sensitivity in collaborative intrusion detection networks: feasibility and challenges. In: Proceedings of the 9th International Conference on Computational Intelligence and Security (CIS), pp. 518–522. IEEE (2013)Google Scholar
  14. 14.
    Li, W., Meng, W., Kwok, L.-F.: Design of intrusion sensitivity-based trust management model for collaborative intrusion detection networks. In: Zhou, J., Gal-Oz, N., Zhang, J., Gudes, E. (eds.) IFIPTM 2014. IAICT, vol. 430, pp. 61–76. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43813-8_5CrossRefGoogle Scholar
  15. 15.
    Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–276 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model. J. Netw. Comput. Appl. 77, 135–145 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: PMFA: toward passive message fingerprint attacks on challenge-based collaborative intrusion detection networks. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 433–449. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46298-1_28CrossRefGoogle Scholar
  18. 18.
    Li, W., Meng, W., Kwok, L.-F.: SOOA: exploring special on-off attacks on challenge-based collaborative intrusion detection networks. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS, vol. 10232, pp. 402–415. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57186-7_30CrossRefGoogle Scholar
  19. 19.
    Meng, Y., Kwok, L.F.: Enhancing false alarm reduction using voted ensemble selection in intrusion detection. Int. J. Comput. Intell. Syst. 6(4), 626–638 (2013)CrossRefGoogle Scholar
  20. 20.
    Meng, Y., Li, W., Kwok, L.F.: Towards adaptive character frequency-based exclusive signature matching scheme and its applications in distributed intrusion detection. Comput. Netw. 57(17), 3630–3640 (2013)CrossRefGoogle Scholar
  21. 21.
    Meng, W., Li, W., Kwok, L.-F.: An evaluation of single character frequency-based exclusive signature matching in distinct IDS environments. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 465–476. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13257-0_29CrossRefGoogle Scholar
  22. 22.
    Meng, W., Li, W., Kwok, L.-F.: EFM: enhancing the performance of signature-based network intrusion detection systems using enhanced filter mechanism. Comput. Secur. 43, 189–204 (2014)CrossRefGoogle Scholar
  23. 23.
    Meng, W., Li, W., Kwok, L.-F.: Design of intelligent KNN-based alarm filter using knowledge-based alert verification in intrusion detection. Secur. Commun. Netw. 8(18), 3883–3895 (2015)CrossRefGoogle Scholar
  24. 24.
    Meng, W., Au, M.H.: Towards statistical trust computation for medical smartphone networks based on behavioral profiling. In: Steghöfer, J.-P., Esfandiari, B. (eds.) IFIPTM 2017. IAICT, vol. 505, pp. 152–159. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59171-1_12CrossRefGoogle Scholar
  25. 25.
    Meng, W., Li, W., Xiang, Y., Choo, K.K.R.: A Bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks. J. Netw. Comput. Appl. 78, 162–169 (2017)CrossRefGoogle Scholar
  26. 26.
    Meng, W., Li, W., Kwok, L.-F.: Towards effective trust-based packet filtering in collaborative network environments. IEEE Trans. Netw. Serv. Manag. 14(1), 233–245 (2017)CrossRefGoogle Scholar
  27. 27.
    Meng, W., Wang, Y., Li, W., Liu, Z., Li, J., Probst, C.W.: Enhancing intelligent alarm reduction for distributed intrusion detection systems via edge computing. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 759–767. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93638-3_44CrossRefGoogle Scholar
  28. 28.
    Meng, W., Li, W., Wang, Y., Au, M.H.: Detecting insider attacks in medical cyber-physical networks based on behavioral profiling. Future Gener. Comput. Syst. (2018, in press). ElsevierGoogle Scholar
  29. 29.
    Mishra, A., Gupta, B.B., Joshi, R.C.: A comparative study of distributed denial of service attacks, intrusion tolerance and mitigation techniques. In: Proceedings of the 2011 European Intelligence and Security Informatics Conference, pp. 286–289 (2011)Google Scholar
  30. 30.
    Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., Govindan, R.: COSSACK: coordinated suppression of simultaneous attacks. In: Proceedings of the 2003 DARPA Information Survivability Conference and Exposition (DISCEX), pp. 94–96 (2003)Google Scholar
  31. 31.
    Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23–24), 2435–2463 (1999)CrossRefGoogle Scholar
  32. 32.
    Porras, P.A., Neumann, P.G.: Emerald: event monitoring enabling responses to anomalous live disturbances. In: Proceedings of the 20th National Information Systems Security Conference, pp. 353–365 (1997)Google Scholar
  33. 33.
    Roesch, M.: Snort: lightweight intrusion detection for networks. In: Proceedings of USENIX Lisa Conference, pp. 229–238 (1999)Google Scholar
  34. 34.
    Scarfone, K., Mell, P.: Guide to Intrusion Detection and Prevention Systems (IDPS). NIST Special Publication 800–94 (2007)Google Scholar
  35. 35.
    Snapp, S.R., et al.: DIDS (Distributed Intrusion Detection System) - motivation, architecture, and an early prototype. In: Proceedings of the 14th National Computer Security Conference, pp. 167–176 (1991)Google Scholar
  36. 36.
    Snort: An open source network intrusion prevention and detection system (IDS/IPS). http://www.snort.org/
  37. 37.
    Tuan, T.A.: A game-theoretic analysis of trust management in P2P systems. In: Proceedings of ICCE, pp. 130–134 (2006)Google Scholar
  38. 38.
    Valdes, A., Anderson, D.: Statistical methods for computer usage anomaly detection using NIDES. Technical report, SRI International, January 1995Google Scholar
  39. 39.
    Vigna, G., Kemmerer, R.A.: NetSTAT: a network-based intrusion detection approach. In: Proceedings of Annual Computer Security Applications Conference (ACSAC), pp. 25–34 (1998)Google Scholar
  40. 40.
    Wu, Y.-S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system (CIDS): a framework for accurate and efficient IDS. In: Proceedings of the 2003 Annual Computer Security Applications Conference (ACSAC), pp. 234–244 (2003)Google Scholar
  41. 41.
    Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the DOMINO overlay system. In: Proceedings of the 2004 Network and Distributed System Security Symposium (NDSS), pp. 1–17 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David Madsen
    • 1
  • Wenjuan Li
    • 1
    • 2
  • Weizhi Meng
    • 1
  • Yu Wang
    • 3
  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon TongHong Kong
  3. 3.School of Computer ScienceGuangzhou UniversityGuangzhouChina

Personalised recommendations