Advertisement

Differentially Private Location Protection with Continuous Time Stamps for VANETs

  • Zhili Chen
  • Xianyue Bao
  • Zuobin Ying
  • Ximeng Liu
  • Hong Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11337)

Abstract

Vehicular Ad hoc Networks (VANETs) have higher requirements of continuous Location-Based Services (LBSs). However, the untrusted server could reveal the users’ location privacy in the meantime. Syntactic-based privacy models have been widely used in most of the existing location privacy protection schemes. Whereas, they are suffering from background knowledge attacks, neither do they take the continuous time stamps into account. Therefore we propose a new differential privacy definition in the context of location protection for the VANETs, and we designed an obfuscation mechanism so that fine-grained locations and trajectories will not exposed when vehicles request location-based services on continuous time stamps. Then, we apply the exponential mechanism in the pseudonym permutations to provide disparate pseudonyms for different vehicles when making requests on different time stamps, these pseudonyms can hide the position correlation of vehicles on consecutive time stamps besides releasing them in a coarse-grained form simultaneously. The experimental results on real-world datasets indicate that our scheme significantly outperforms the baseline approaches in data utility.

Keywords

LBS VANETs Location privacy Continuous time stamps Differential privacy 

Notes

Acknowledgment

The work is supported by the Natural Science Foundation of China under Grant No. 61572031 & U1405255. We thank the anonymous reviewers for their valuable comments that helped improve the final version of this paper.

References

  1. 1.
    Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 901–914. ACM (2013)Google Scholar
  2. 2.
    Chow, C.-Y., Mokbel, M.F.: Enabling private continuous queries for revealed user locations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 258–275. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73540-3_15CrossRefGoogle Scholar
  3. 3.
    Cui, J., Wen, J., Han, S., Zhong, H.: Efficient privacy-preserving scheme for real-time location data in vehicular ad-hoc network. IEEE Internet Things J. (2018)Google Scholar
  4. 4.
    Dewri, R.: Local differential perturbations: location privacy under approximate knowledge attackers. IEEE Trans. Mob. Comput. 12(12), 2360–2372 (2013)CrossRefGoogle Scholar
  5. 5.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79228-4_1CrossRefzbMATHGoogle Scholar
  6. 6.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_14CrossRefGoogle Scholar
  7. 7.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 121–132. ACM (2008)Google Scholar
  8. 8.
    Jorgensen, Z., Yu, T., Cormode, G.: Conservative or liberal? Personalized differential privacy. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 1023–1034. IEEE (2015)Google Scholar
  9. 9.
    Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72037-9_8CrossRefGoogle Scholar
  10. 10.
    Lim, J., Yu, H., Kim, K., Kim, M., Lee, S.B.: Preserving location privacy of connected vehicles with highly accurate location updates. IEEE Commun. Lett. 21(3), 540–543 (2017)CrossRefGoogle Scholar
  11. 11.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103. IEEE (2007)Google Scholar
  12. 12.
    Mouratidis, K., Yiu, M.L.: Anonymous query processing in road networks. IEEE Trans. Knowl. Data Eng. 22(1), 2–15 (2010)CrossRefGoogle Scholar
  13. 13.
    Mouratidis, K., Yiu, M.L.: Shortest path computation with no information leakage. Proc. VLDB Endow. 5(8), 692–703 (2012)CrossRefGoogle Scholar
  14. 14.
    Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14(3), 495–508 (2015)CrossRefGoogle Scholar
  15. 15.
    Pan, X., Meng, X., Xu, J.: Distortion-based anonymity for continuous queries in location-based mobile services. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 256–265. ACM (2009)Google Scholar
  16. 16.
    Pan, X., Xu, J., Meng, X.: Protecting location privacy against location-dependent attacks in mobile services. IEEE Trans. Knowl. Data Eng. 24(8), 1506–1519 (2012)CrossRefGoogle Scholar
  17. 17.
    Shin, H., Vaidya, J., Atluri, V., Choi, S.: Ensuring privacy and security for LBS through trajectory partitioning. In: 2010 Eleventh International Conference on Mobile Data Management (MDM), pp. 224–226. IEEE (2010)Google Scholar
  18. 18.
    Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal correlations. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1298–1309. ACM (2015)Google Scholar
  19. 19.
    Yang, W.D., Gao, Z.M., Wang, K., Liu, H.Y.: A privacy-preserving data aggregation mechanism for vanets. J. High Speed Netw. 22(3), 223–230 (2016)CrossRefGoogle Scholar
  20. 20.
    Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng. 25(5), 1125–1134 (2013)CrossRefGoogle Scholar
  21. 21.
    Ying, B., Makrakis, D., Mouftah, H.T.: Dynamic mix-zone for location privacy in vehicular networks. IEEE Commun. Lett. 17(8), 1524–1527 (2013)CrossRefGoogle Scholar
  22. 22.
    Yu, R., Kang, J., Huang, X., Xie, S., Zhang, Y., Gjessing, S.: MixGroup: accumulative pseudonym exchanging for location privacy enhancement in vehicular social networks. IEEE Trans. Dependable Secur. Comput. 13(1), 93–105 (2016)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y.: T-drive trajectory data sample, August 2011. https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhili Chen
    • 1
  • Xianyue Bao
    • 1
  • Zuobin Ying
    • 1
  • Ximeng Liu
    • 2
    • 3
  • Hong Zhong
    • 1
  1. 1.School of Computer Science and TechnologyAnhui UniversityHefeiChina
  2. 2.School of Information SystemsSingapore Management UniversitySingaporeSingapore
  3. 3.University Key Laboratory of Information Security of Network Systems (Fuzhou University)FuzhouChina

Personalised recommendations