Advertisement

RFGRU: A Novel Approach for Mobile Application Traffic Identification

  • Yu Zhang
  • Yufei Jin
  • Jianzhong Zhang
  • Huan Wu
  • Xueqiang Zou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11335)

Abstract

Billions of users access the Internet through their mobile devices to get services. Mobile traffic classification has become a hot topic in recent years due to its large volume of traffic data. Many of the studies that have been done show that the key point of mobile traffic identification is to extract signatures. However, the process of signature extraction is usually too complex to perform. In this paper, we propose a novel method RFGRU which is based on the Random Forest and gated recurrent unit, to address the mobile traffic classification problem. Several experiments are performed to verify the effectiveness of RFGRU. The results show that RFGRU delivers a good recognition rate and can accurately identify the traffic of the mobile applications.

Keywords

Mobile traffic classification Random Forest Gated recurrent unit 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61702288), the Natural Science Foundation of Tianjin in China (No. 16JCQNJC00700), the National Information Security Research Plan of China, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Gowsalya, R., Amali, S.M.J.: Naive Bayes based network traffic classification using correlation information. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(3) (2014)Google Scholar
  2. 2.
    Cisco visual networking index: Global mobile data traffic forecast update 2014–2019. http://goo.gl/Zu8f2r
  3. 3.
    Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 329–344. ACM (2011)Google Scholar
  4. 4.
    Tongaonkar, A., Dai, S., Nucci, A., Song, D.: Understanding mobile app usage patterns using in-app advertisements. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 63–72. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36516-4_7CrossRefGoogle Scholar
  5. 5.
    Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In: ACM SIGMETRICS Performance Evaluation Review, vol. 33, pp. 50–60. ACM (2005)Google Scholar
  6. 6.
    Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic classification. IEEE Trans. Neural Netw. 18(1), 223–239 (2007)CrossRefGoogle Scholar
  7. 7.
    Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for TCP traffic classification. Comput. Netw. 53(14), 2476–2490 (2009)CrossRefGoogle Scholar
  8. 8.
    Lin, P., Xun-yi, Y., Liu, F., Zhen-ming, L.E.I.: A network traffic classification algorithm based on flow statistical characteristics. J. Beijing Univ. Posts Telecommun. 31(2), 15–19 (2008)Google Scholar
  9. 9.
    Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observations. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1481–1489. IEEE (2015)Google Scholar
  10. 10.
    Ranjan, G., Tongaonkar, A., Torres, R.: Approximate matching of persistent lexicon using search-engines for classifying mobile app traffic. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)Google Scholar
  11. 11.
    Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: self adaptive mining of persistent lexical snippets for classifying mobile application traffic. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 439–451. ACM (2015)Google Scholar
  12. 12.
    Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards automatic fingerprinting of android apps. In: INFOCOM 2013, Proceedings IEEE, pp. 809–817. IEEE (2013)Google Scholar
  13. 13.
    Yun, X., Wang, Y., Zhang, Y., Zhou, Y.: A semantics-aware approach to the automated network protocol identification. IEEE/ACM Trans. Netw. (TON) 24(1), 583–595 (2016)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Yun, X., Zhang, Y.: Rethinking robust and accurate application protocol identification: a nonparametric approach. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 134–144. IEEE (2015)Google Scholar
  15. 15.
    Zhang, Z., Zhang, Z., Lee, P.P., Liu, Y., Xie, G.: Proword: an unsupervised approach to protocol feature word extraction. In: INFOCOM, 2014 Proceedings IEEE, pp. 1393–1401. IEEE (2014)Google Scholar
  16. 16.
    Hu, L., Li, J., Nie, L., Li, X.L., Shao, C.: What happens next? Future subevent prediction using contextual hierarchical LSTM. In: AAAI, pp. 3450–3456 (2017)Google Scholar
  17. 17.
    Yang, M., Tu, W., Wang, J., Xu, F., Chen, X.: Attention based LSTM for target dependent sentiment classification. In: AAAI, pp. 5013–5014 (2017)Google Scholar
  18. 18.
    Stuner, B., Chatelain, C., Paquet, T.: Cascading BLSTM networks for handwritten word recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3416–3421. IEEE (2016)Google Scholar
  19. 19.
    Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
  20. 20.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  21. 21.
    Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22092-0_16CrossRefGoogle Scholar
  22. 22.
    Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 229–240. ACM (2005)Google Scholar
  23. 23.
    Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu Zhang
    • 1
  • Yufei Jin
    • 1
  • Jianzhong Zhang
    • 1
  • Huan Wu
    • 1
  • Xueqiang Zou
    • 2
    • 3
  1. 1.College of Cyberspace SecurityNankai UniversityTianjinChina
  2. 2.National Computer Network Emergency Response Technical Team/Coordination Center of ChinaBeijingChina
  3. 3.School of Cyber SecurityUniversity of Chinese Academy of SciensesBeijingChina

Personalised recommendations